- 1. Show that $\{\mathbf{Inf}, \mathbf{Sep}\} \vdash \mathbf{Emp}$. Does $\mathbf{Inf} \vdash \mathbf{Emp}$? Does $\mathbf{Sep} \vdash \mathbf{Emp}$? [N.B. You should interpret $\{\mathbf{Inf}, \mathbf{Sep}\}$ as "the collection of formulae in the language of sets consisting of the Axiom of Infinity and every instance of the Axiom of Separation" etc.]
- 2. Show that $\mathbf{Rep} \vdash \mathbf{Sep}$. Show also that $\{\mathbf{Emp}, \mathbf{Pow}, \mathbf{Rep}\} \vdash \mathbf{Pair}$.
- 3. Write down sentences in the language of sets to express the assertions that, for any two sets x and y, the product $x \times y$ and the set of all functions from x to y exist. Indicate how to deduce these sentences from the axioms of ZF.
- 4. Write down a formula p in the language of sets with $FV(p) = \{x\}$ that says "x is a (von Neumann) ordinal". What should the von Neumann ordinal ω^2 be? Why do the axioms of ZF prove that it is a set?
- 5. Is it true that if x is a transitive set then the relation \in on x is a transitive relation? Does the converse hold?
- 6. What precisely do we mean by the assertion "every set is a class"? Show carefully that if V is a model of ZF then the class V is not a set.
- 7. Formulate a precise definition of a class defined by a formula p in the language of sets with $FV(p) = \{x, t\}$ where t is a parameter.
- 8. Let \in -Ind denote the principle of \in -induction and let p be the formula $(\forall y)((x \in y) \Rightarrow (\exists z)((z \in y) \land (z \cap y = \emptyset)))$. Show that $(ZF \setminus \{\mathbf{Fdn}\}) \cup \{\in -\mathbf{Ind}\} \vdash (\forall x)p$ and hence that $(ZF \setminus \{\mathbf{Fdn}\}) \cup \{\in -\mathbf{Ind}\} \vdash \mathbf{Fdn}$.
- 9. What is the rank of $\{2,3,6\}$? What is the rank of $\{\{2,3\},\{6\}\}$? Work out the ranks of \mathbb{Z} , \mathbb{Q} and \mathbb{R} , using your favourite constructions of these objects from ω .
- 10. A set x is called *hereditarily finite* if each member of $TC(\{x\})$ is finite. Prove that the class HF of hereditarily finite sets coincides with V_{ω} . Which of the axioms of ZF are satisfied in the structure HF?
- 11. Which of the axioms of ZF are satisfied in the structure $V_{\omega+\omega}$?
- 12. If ZF is consistent then, by Downward Löwenheim-Skolem, it has a countable model. Doesn't this contradict the fact that, for example, the power-set of ω is uncountable?
- 13. Show that if ZF is consistent then it has a model V containing elements x_0, x_1, x_2, \ldots , such that $x_{n+1} \in x_n$ for $n = 0, 1, 2, \ldots$. Doesn't this show that ZF is in fact inconsistent, as now $\{x_0, x_1, x_2, \ldots\}$ is a non-empty set by **Rep** with no \in -minimal member, contradicting **Fdn**?
- 14. Is PA $\cup \{\neg Con(PA)\}$ ω -consistent?
- ⁺15. Show (without assuming the fact that every computable/recursive function is PA-definable) that the function $f: \mathbb{N} \to \mathbb{N}$ given by $f(n) = 2^n$ is PA-definable.