1. Show that $\{\mathbf{I n f}, \mathbf{S e p}\} \vdash$ Emp. Does $\operatorname{Inf} \vdash \mathbf{E m p}$? Does Sep $\vdash \mathbf{E m p}$? [N.B. You should interpret $\{\mathbf{I n f}, \mathbf{S e p}\}$ as "the collection of formulae in the language of sets consisting of the Axiom of Infinity and every instance of the Axiom of Separation" etc.]
2. Show that Rep \vdash Sep. Show also that $\{$ Emp, Pow, Rep $\} \vdash$ Pair.
3. Write down sentences in the language of sets to express the assertions that, for any two sets x and y, the product $x \times y$ and the set of all functions from x to y exist. Indicate how to deduce these sentences from the axioms of ZF.
4. Write down a formula p in the language of sets with $\mathrm{FV}(p)=\{x\}$ that says " x is a (von Neumann) ordinal". What should the von Neumann ordinal ω^{2} be? Why do the axioms of ZF prove that it is a set?
5. Is it true that if x is a transitive set then the relation \in on x is a transitive relation? Does the converse hold?
6. Let \in-Ind denote the principle of \in-induction and let p be the formula $(\forall y)((x \in y) \Rightarrow$ $(\exists z)((z \in y) \wedge(z \cap y=\emptyset)))$. Show that $(Z F \backslash\{\mathbf{F d n}\}) \cup\{\in-\mathbf{I n d}\} \vdash(\forall x) p$ and hence that $(\mathrm{ZF} \backslash\{\mathbf{F d n}\}) \cup\{\in-\mathbf{I n d}\} \vdash \mathbf{F d n}$.
7. What is the rank of $\{2,3,6\}$? What is the rank of $\{\{2,3\},\{6\}\}$? Work out the ranks of \mathbb{Z}, \mathbb{Q} and \mathbb{R}, using your favourite constructions of these objects from ω.
8. A set x is called hereditarily finite if each member of $\mathrm{TC}(\{x\})$ is finite. Prove that the class HF of hereditarily finite sets coincides with V_{ω}. Which of the axioms of ZF are satisfied in the structure HF?
9. Which of the axioms of ZF are satisfied in the structure $V_{\omega+\omega}$?
10. If ZF is consistent then, by Downward Löwenheim-Skolem, it has a countable model. Doesn't this contradict the fact that, for example, the power-set of ω is uncountable?
11. Assume that ZF is consistent. We extend the language of ZF by adding new constants $\alpha_{1}, \alpha_{2}, \ldots$, and extend the axioms of ZF by adding (for each n) the assertions that α_{n} is an ordinal and that $\alpha_{n+1}<\alpha_{n}$. Explain why this theory has a model. In this model of ZF, haven't we contradicted the fact that the ordinals are "well-ordered" (that is to say, that each non-empty set of ordinals has a least element)?
12. Prove (in ZF) that a countable union of countable sets cannot have cardinality \aleph_{2}.
13. Is every countable model of PA isomorphic to \mathbb{N} ? (What does "isomorphic" mean?)
14. Is $\mathrm{PA} \cup\{\neg \operatorname{Con}(\mathrm{PA})\}$ consistent? Is it ω-consistent?
${ }^{+} 15$. Show that the function $f(n)=2^{n}$ is definable in the language of PA ; that is to say, show that there is a formula p in the language of PA with $F V(p)=\{x, y\}$ such that, for all $m, n \in \mathbb{N},(m, n) \in p_{\mathbb{N}}$ iff $n=2^{m}$.
