1. Show that $\{Inf, Sep\} \vdash Emp$. Does $Inf \vdash Emp$? Does $Sep \vdash Emp$? [N.B. You should interpret $\{Inf, Sep\}$ as "the collection of formulae in the language of sets consisting of the Axiom of Infinity and every instance of the Axiom of Separation" etc.]

2. Show that $\operatorname{\mathbf{Rep}} \vdash \operatorname{\mathbf{Sep}}$. Show also that $\{\operatorname{\mathbf{Emp}}, \operatorname{\mathbf{Pow}}, \operatorname{\mathbf{Rep}}\} \vdash \operatorname{\mathbf{Pair}}$.

3. Write down sentences in the language of sets to express the assertions that, for any two sets x and y, the product $x \times y$ and the set of all functions from x to y exist. Indicate how to deduce these sentences from the axioms of ZF.

4. Write down a formula p in the language of sets with $FV(p) = \{x\}$ that says "x is a (von Neumann) ordinal". What should the von Neumann ordinal ω^2 be? Why do the axioms of ZF prove that it is a set?

5. Is it true that if x is a transitive set then the relation \in on x is a transitive relation? Does the converse hold?

6. Let \in -Ind denote the principle of \in -induction and let p be the formula $(\forall y)((x \in y) \Rightarrow (\exists z)((z \in y) \land (z \cap y = \emptyset)))$. Show that $(ZF \setminus \{Fdn\}) \cup \{\in -Ind\} \vdash (\forall x)p$ and hence that $(ZF \setminus \{Fdn\}) \cup \{\in -Ind\} \vdash Fdn$.

7. What is the rank of $\{2,3,6\}$? What is the rank of $\{\{2,3\},\{6\}\}$? Work out the ranks of \mathbb{Z} , \mathbb{Q} and \mathbb{R} , using your favourite constructions of these objects from ω .

8. A set x is called *hereditarily finite* if each member of $TC(\{x\})$ is finite. Prove that the class HF of hereditarily finite sets coincides with V_{ω} . Which of the axioms of ZF are satisfied in the structure HF?

9. Which of the axioms of ZF are satisfied in the structure $V_{\omega+\omega}$?

10. If ZF is consistent then, by Downward Löwenheim-Skolem, it has a countable model. Doesn't this contradict the fact that, for example, the power-set of ω is uncountable?

11. Assume that ZF is consistent. We extend the language of ZF by adding new constants $\alpha_1, \alpha_2, \ldots$, and extend the axioms of ZF by adding (for each n) the assertions that α_n is an ordinal and that $\alpha_{n+1} < \alpha_n$. Explain why this theory has a model. In this model of ZF, haven't we contradicted the fact that the ordinals are "well-ordered" (that is to say, that each non-empty set of ordinals has a least element)?

12. Prove (in ZF) that a countable union of countable sets cannot have cardinality \aleph_2 .

13. Is every countable model of PA isomorphic to \mathbb{N} ? (What does "isomorphic" mean?)

14. Is $PA \cup \{\neg Con(PA)\}$ consistent? Is it ω -consistent?

+15. Show that the function $f(n) = 2^n$ is definable in the language of PA; that is to say, show that there is a formula p in the language of PA with $FV(p) = \{x, y\}$ such that, for all $m, n \in \mathbb{N}, (m, n) \in p_{\mathbb{N}}$ iff $n = 2^m$.