

Set Theory and Logic, Michaelmas 2016, Sheet 2: Posets

October 27, 2016

‘+’ signifies a question you shouldn’t have trouble with; ‘ \otimes ’ means what you think it means.

(i)

For $n \in \mathbb{N}$, how many antisymmetrical binary relations are there on a set of cardinality n ? How many binary relations satisfying *trichotomy*: $(\forall xy)(R(x, y) \vee R(y, x) \vee x = y)$? How are your two answers related?

[That was the version that was circulated on the printed sheet. A better version asks for the numbers of *symmetric* relations and the number of *antisymmetric trichotomous* relations.]

(ii)

Consider the set of equivalence relations on a fixed set partially ordered by \subseteq . Show that it is a lattice. Must it be distributive? Is it complete?

(iii)

Cardinals: Recall that $\alpha \cdot \beta$ is $|A \times B|$ where $|A| = \alpha$ and $|B| = \beta$. Show that a union of α disjoint sets each of size β has size $\alpha \cdot \beta$. Explain your use of AC.

(iv)

Let $\langle A, \leq \rangle$ and $\langle B, \leq \rangle$ be total orderings with $\langle A, \leq \rangle$ isomorphic to an initial segment of $\langle B, \leq \rangle$ and $\langle B, \leq \rangle$ isomorphic to a terminal segment of $\langle A, \leq \rangle$. Show that $\langle A, \leq \rangle$ and $\langle B, \leq \rangle$ are isomorphic.

(v)

(Mathematics Tripos Part II 2002:B2:11b, modified).

1. Let U be an arbitrary set and $\mathcal{P}(U)$ be the power set of U . For X a subset of $\mathcal{P}(U)$, the **dual** X^\vee of X is the set $\{y \subseteq U : (\forall x \in X)(y \cap x \neq \emptyset)\}$.
2. Is the function $X \mapsto X^\vee$ monotone? Comment.
3. By considering the poset of those subsets of $\mathcal{P}(X)$ that are subsets of their duals, or otherwise, show that there are sets $X \subseteq U$ with $X = X^\vee$.

4. $X^{\vee\vee}$ is clearly a superset of X , in that it contains every superset of every member of X . What about the reverse inclusion? That is, do we have $Y \in X^{\vee\vee} \rightarrow (\exists Z \in X)(Z \subseteq Y)$?
5. Is $A^{\vee\vee\vee}$ always equal to A^\vee ?

(vi)

Use Zorn's Lemma to prove that

- (i) every partial ordering on a set X can be extended to a total ordering of X ;
- (ii) for any two sets A and B , there exists either an injection $A \hookrightarrow B$ or an injection $B \hookrightarrow A$.

(vii)

(Tripos IIA 1998 p 10 q 7)

Let $\langle P, \leq_P \rangle$ be a chain-complete poset with a least element, and $f : P \rightarrow P$ an order-preserving map. Show that the set of fixed points of f has a least element and is chain-complete in the ordering it inherits from P . Deduce that if f_1, f_2, \dots, f_n are order-preserving maps $P \rightarrow P$ which commute with each other (i.e. $f_i \circ f_j = f_j \circ f_i$ for all i, j), then they have a common fixed point. Show by an example that two order-preserving maps $P \rightarrow P$ which do not commute with each other need not have a common fixed point.

(viii)

$\mathbb{N} \rightarrow \mathbb{N}$ is the set of partial functions from \mathbb{N} to \mathbb{N} , thought of as sets of ordered pairs and partially ordered by \subseteq .

Is it complete? Directed-complete? Separative? Which fixed point theorems are applicable?

For each of the following functions $\Phi : (\mathbb{N} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N} \rightarrow \mathbb{N})$, determine (a) whether Φ is order-preserving, and (b) whether it has a fixed point:

- (i) $\Phi(f)(n) = f(n) + 1$ if $f(n)$ is defined, undefined otherwise.
- (ii) $\Phi(f)(n) = f(n) + 1$ if $f(n)$ is defined, $\Phi(f)(n) = 0$ otherwise.
- (iii) $\Phi(f)(n) = f(n - 1) + 1$ if $f(n - 1)$ is defined, $\Phi(f)(n) = 0$ otherwise.

(ix)

Players I and II alternately pick elements (I plays first) from a set A (repetitions allowed: A does not get used up) thereby jointly constructing an element s of A^ω , the set of ω -sequences from A . Every subset $X \subseteq A^\omega$ defines a game $G(X)$ which is won by player I if $s \in X$ and by II otherwise. Give A the discrete topology and A^ω the product topology.

By considering the poset of partial functions $A^{<\omega} \rightarrow \{\text{I, II}\}$ ($A^{<\omega}$ is the set of finite sequences from A) or otherwise prove that if X is open then one of the two players must have a winning strategy.

(x)

$\mathbb{R} = \langle 0, 1, +\times, \leq \rangle$ is a field. Consider the product $\mathbb{R}^{\mathbb{N}}$ of countably many copies thereof, with operations defined pointwise. Let \mathcal{U} be an ultrafilter on \mathbb{N} and consider $\mathbb{R}^{\mathbb{N}}/\mathcal{U}$. Prove that it is a field. Is it archimedean?

(xi)

- (i)⁺ How many order-preserving maps $\mathbb{R} \rightarrow \mathbb{R}$ are there?
- (ii) Let $\langle X, \leq_X \rangle$ be a total order with no nontrivial order-preserving injection $X \rightarrow X$.
Must X be finite?