LINEAR ANALYSIS – EXAMPLES 4

Michaelmas 2019

- 1. For a fixed $(a_n)_{n=1}^{\infty} \in l_{\infty}$, define the operator $T : l_2 \to l_2$ by $T((x_n)_{n=1}^{\infty}) = (a_n x_n)_{n=1}^{\infty}$. Prove that T is continuous and that $||T|| = ||a||_{\infty}$. Find the eigenvalues (point spectrum) and the spectrum of T. When is T compact?
- 2. Let *H* be a Hilbert space. Let $U \in \mathcal{B}(H)$ be a *unitary* operator on *H*, which means that *U* is invertible and $\langle U(x), U(y) \rangle = \langle x, y \rangle$ for all $x, y \in H$. Show that $\sigma(U) \subset \{z \in \mathbb{C} : |z| = 1\}$.
- 3. Let K be a non-empty compact subset of C. Show that there is an operator $T: l_2 \to l_2$ with $\sigma(T) = K$.
- 4. Let $(a_{ij})_{i,j=1}^{\infty}$ be a complex matrix with $\sum_{i,j=1}^{\infty} |a_{ij}|^2 < \infty$. Show that we can define an operator $T: l_2 \to l_2$ by $T\left(\sum_{i=1}^{\infty} x_i e_i\right) = \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{ij} x_j\right) e_i$. Prove also that T is compact.
- 5. Are the invertible operators dense in $\mathcal{B}(l_2)$?
- 6 . Construct a self-adjoint operator T on a (non-zero) Hilbert space H such that T has no eigenvalues.
- 7 . Construct a compact operator T on a (non-zero) Hilbert space H such that T has no eigenvalues.
- 8. Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Prove that T compact $\Longrightarrow T^*$ compact.
- 9. Let X be a Banach space and $T \in \mathcal{B}(X)$ a compact operator. Suppose that $\lambda \in \mathbf{C} \setminus \{0\}$ is not an eigenvalue of T. Show that there is a number c > 0 such that $||T(x) \lambda x|| \ge c ||x||$ for every $x \in X$.
- 10. Let X be a complex Banach space, $T \in \mathcal{B}(X)$ and let $p : \mathbb{C} \to \mathbb{C}$ be a non-constant complex polynomial. Show that $\sigma(p(T)) = p(\sigma(T))$.