1. Let $Y$ be a closed subset of a normal space $X$, and let $f: Y \rightarrow \mathbb{C}$ be a bounded continuous function. Prove that $f$ can be extended to a bounded continuous function $g: X \rightarrow \mathbb{C}$, with $\|g\|_{\infty}=\|f\|_{\infty}$.
2. Let $Y$ be a closed subset of a normal space $X$, and let $f: Y \rightarrow \mathbb{R}$ be a (possibly unbounded) continuous function. Prove that $f$ can be extended to a continuous function $g: X \rightarrow \mathbb{R}$.
3. Let $K$ be a compact Hausdorff space, and let $A$ be a closed subalgebra of $C_{\mathbb{R}}(K)$. Suppose that $A$ separates the points of $K$, and that for every $x \in K$ there is an $f \in A$ with $f(x) \neq 0$. Prove that $A=C_{\mathbb{R}}(K)$.
4. Let $K$ be a compact Hausdorff space. Find the maximal (proper) closed subalgebras of $C_{\mathbb{R}}(K)$.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $\int_{0}^{1} f(x) x^{n} d x=0$ for every $n$. Prove that $f=0$.
6. Let $K$ be a compact metric space. Show that $C(K)$ is separable.
7. Let $E$ be a closed subspace of $C[0,1]$, and suppose that every $f \in E$ is continuously differentiable. Show that the map $f \mapsto f^{\prime}$ from $E$ to $C[0,1]$ is continuous, and deduce that $E$ is finite-dimensional.
8. Let $X$ be an inner product space, and let $T: X \rightarrow X$ be a linear map. Show that $(T x, T y)=(x, y)$ for all $x, y \in X$ if and only if $\|T x\|=\|x\|$ for all $x \in X$.
9. Let $X$ be a complex inner product space, and let $T: X \rightarrow X$ be a linear map. Show that if $(T x, x)=0$ for all $x \in X$ then $T=0$. Does the same conclusion hold in the real case?
10. Let $(X,\|\cdot\|)$ be a normed space. Prove that the norm is induced by an inner product if and only if $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$ for all $x, y \in X$.
11. Construct an inner product space $X$ and a closed subspace $F$ of $X$ such that $F \neq X$ but $F^{\perp}=\{0\}$.
12. Show that the unit ball of $l_{2}$ contains an infinite set $S$ such that $\|x-y\|>\sqrt{2}$ for all distinct $x, y \in S$. Can the constant $\sqrt{2}$ be improved?
${ }^{+}$13. Let $K$ be a compact Hausdorff space. Does $K$ separable imply $C(K)$ separable?
${ }^{+}$14. Construct a Hausdorff space (of more than 1 point) on which every continuous real-valued function is constant.
