1. Let Y be a closed subset of a normal space X, and let $f : Y \to \mathbb{C}$ be a bounded continuous function. Prove that f can be extended to a bounded continuous function $g: X \to \mathbb{C}$, with $\|g\|_{\infty} = \|f\|_{\infty}$.

2. Let Y be a closed subset of a normal space X, and let $f : Y \to \mathbb{R}$ be a (possibly unbounded) continuous function. Prove that f can be extended to a continuous function $g: X \to \mathbb{R}$.

3. Let K be a compact Hausdorff space, and let A be a closed subalgebra of $C_{\mathbb{R}}(K)$. Suppose that A separates the points of K, and that for every $x \in K$ there is an $f \in A$ with $f(x) \neq 0$. Prove that $A = C_{\mathbb{R}}(K)$.

4. Let K be a compact Hausdorff space. Find the maximal (proper) closed subalgebras of $C_{\mathbb{R}}(K)$.

5. Let $f : [0,1] \to \mathbb{R}$ be a continuous function such that $\int_0^1 f(x) x^n dx = 0$ for every n. Prove that f = 0.

6. Let K be a compact metric space. Show that C(K) is separable.

7. Let *E* be a closed subspace of C[0,1], and suppose that every $f \in E$ is continuously differentiable. Show that the map $f \mapsto f'$ from *E* to C[0,1] is continuous, and deduce that *E* is finite-dimensional.

8. Let X be an inner product space, and let $T : X \to X$ be a linear map. Show that (Tx, Ty) = (x, y) for all $x, y \in X$ if and only if ||Tx|| = ||x|| for all $x \in X$.

9. Let X be a complex inner product space, and let $T : X \to X$ be a linear map. Show that if (Tx, x) = 0 for all $x \in X$ then T = 0. Does the same conclusion hold in the real case?

10. Let $(X, \|.\|)$ be a normed space. Prove that the norm is induced by an inner product if and only if $\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2$ for all $x, y \in X$.

11. Construct an inner product space X and a closed subspace F of X such that $F \neq X$ but $F^{\perp} = \{0\}$.

12. Show that the unit ball of l_2 contains an infinite set S such that $||x - y|| > \sqrt{2}$ for all distinct $x, y \in S$. Can the constant $\sqrt{2}$ be improved?

+13. Let K be a compact Hausdorff space. Does K separable imply C(K) separable?

⁺14. Construct a Hausdorff space (of more than 1 point) on which every continuous real-valued function is constant.