1. For a fixed $a = (a_n) \in l_{\infty}$, define $T : l_2 \to l_2$ by $T(\sum x_n e_n) = \sum a_n x_n e_n$. Prove that T is continuous, and that $||T|| = ||a||_{\infty}$.

2. A linear functional T on l_{∞} is called *positive* if $T(y) \ge 0$ whenever $y_n \ge 0$ for all n. Prove that a positive linear functional on l_{∞} is continuous.

3. Prove carefully that c_0^* is isometrically isomorphic to l_1 and that l_1^* is isometrically isomorphic to l_{∞} .

4. Let T be a linear functional on a normed space X. Prove that if T is continuous then Ker T is closed in X, while if T is discontinuous then Ker T is dense in X.

5. For which $a \in l_{\infty}$ is the operator T in Question 1 compact?

6. Let X and Y be normed spaces that are dense in Banach spaces \widetilde{X} and \widetilde{Y} respectively, and let $T \in L(X,Y)$. Explain why T extends to a unique $\widetilde{T} \in L(\widetilde{X},\widetilde{Y})$. Show that $\|\widetilde{T}\| = \|T\|$, so that we may regard L(X,Y) as a subspace of $L(\widetilde{X},\widetilde{Y})$. Is L(X,Y) dense in $L(\widetilde{X},\widetilde{Y})$? If T is surjective, must \widetilde{T} be surjective? If T is injective, must \widetilde{T} be injective?

7. Does there exist a discontinuous linear map on a Banach space?

8. Let X be a (non-empty) countable complete metric space. Prove that X has an isolated point.

9. Let $f : \mathbb{R}_+ \to \mathbb{R}$ be a continuous function such that for every x > 0 we have $f(nx) \to 0$ as $n \to \infty$. Show that $f(x) \to 0$ as $x \to \infty$.

10. Let X be a closed subspace of C[0,1]. Suppose that for every $f \in C[0,1/2]$ there exists $g \in X$ whose restriction to [0,1/2] is f. Show that there is a constant c such that the function g may always be chosen to satisfy $||g|| \leq c||f||$.

11. Let $\|.\|$ be a complete norm on C[0,1] such that, for every $x \in [0,1]$, the evaluation map $f \mapsto f(x)$ is continuous. Prove that $\|.\|$ is equivalent to the uniform norm.

12. Let $T : l_2 \to l_2$ be a linear map such that, for every $y \in l_2$, the map $x \mapsto T(x).y$ is continuous. Must T be continuous?

13. Does there exist a complete norm on F, the space of finite sequences?

+14. Let $f : \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function such that for every $x \in \mathbb{R}$ there is an n with $f^{(m)}(x) = 0$ for all $m \ge n$. Prove that f is a polynomial.