1. For a fixed $a=\left(a_{n}\right) \in l_{\infty}$, define $T: l_{2} \rightarrow l_{2}$ by $T\left(\sum x_{n} e_{n}\right)=\sum a_{n} x_{n} e_{n}$. Prove that T is continuous, and that $\|T\|=\|a\|_{\infty}$.
2. A linear functional T on l_{∞} is called positive if $T(y) \geq 0$ whenever $y_{n} \geq 0$ for all n. Prove that a positive linear functional on l_{∞} is continuous.
3. Prove carefully that $c_{0}{ }^{*}$ is isometrically isomorphic to l_{1} and that $l_{1}{ }^{*}$ is isometrically isomorphic to l_{∞}.
4. Let T be a linear functional on a normed space X. Prove that if T is continuous then $\operatorname{Ker} T$ is closed in X, while if T is discontinuous then $\operatorname{Ker} T$ is dense in X.
5. For which $a \in l_{\infty}$ is the operator T in Question 1 compact?
6. Let X and Y be normed spaces that are dense in Banach spaces \widetilde{X} and \tilde{Y} respectively, and let $T \in L(X, Y)$. Explain why T extends to a unique $\widetilde{T} \in L(\widetilde{X}, \widetilde{Y})$. Show that $\|\widetilde{T}\|=\|T\|$, so that we may regard $L(X, Y)$ as a subspace of $L(\widetilde{X}, \widetilde{Y})$. Is $L(X, Y)$ dense in $L(\widetilde{X}, \widetilde{Y})$? If T is surjective, must \widetilde{T} be surjective? If T is injective, must \widetilde{T} be injective?
7. Does there exist a discontinuous linear map on a Banach space?
8. Let X be a (non-empty) countable complete metric space. Prove that X has an isolated point.
9. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a continuous function such that for every $x>0$ we have $f(n x) \rightarrow 0$ as $n \rightarrow \infty$. Show that $f(x) \rightarrow 0$ as $x \rightarrow \infty$.
10. Let X be a closed subspace of $C[0,1]$. Suppose that for every $f \in C[0,1 / 2]$ there exists $g \in X$ whose restriction to $[0,1 / 2]$ is f. Show that there is a constant c such that the function g may always be chosen to satisfy $\|g\| \leq c\|f\|$.
11. Let $\|\cdot\|$ be a complete norm on $C[0,1]$ such that, for every $x \in[0,1]$, the evaluation map $f \mapsto f(x)$ is continuous. Prove that $\|$.$\| is equivalent to the uniform norm.$
12. Let $T: l_{2} \rightarrow l_{2}$ be a linear map such that, for every $y \in l_{2}$, the map $x \mapsto T(x) . y$ is continuous. Must T be continuous?
13. Does there exist a complete norm on F, the space of finite sequences?
${ }^{+}$14. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function such that for every $x \in \mathbb{R}$ there is an n with $f^{(m)}(x)=0$ for all $m \geq n$. Prove that f is a polynomial.
