Mich. 2023 LINEAR ANALYSIS – EXAMPLES 1 IBL

1. Prove carefully that C[0,1] is incomplete in the integral norm $\|.\|_1$.

2. Show that $C^1[0,1] = \{f \in C[0,1] : f \text{ continuously differentiable}\}$ is incomplete in the uniform norm $\|.\|_{\infty}$ but complete in the norm $\|f\| = \|f\|_{\infty} + \|f'\|_{\infty}$.

3. Prove that a normed space X is a Banach space if and only if every series $\sum x_n$ in X with $\sum ||x_n|| < \infty$ is convergent.

4. Let $1 < p, q, r < \infty$ with 1/p + 1/q + 1/r = 1. Show that if $x \in l_p, y \in l_q, z \in l_r$ then $\sum |x_n y_n z_n| \le ||x||_p ||y||_q ||z||_r$.

5. Let $1 , and let x and y be vectors in <math>l_p$ with ||x|| = ||y|| = 1 and ||x + y|| = 2. Prove that x = y. Does this result also hold in l_1 or l_∞ ?

6. Show directly that the spaces l_p , $1 \le p \le \infty$, and c_0 are complete.

7. Let x and y be vectors in a normed space X with $||x||, ||y|| \ge 1$. Writing x' for x/||x||and y' for y/||y||, is it always true that $||x' - y'|| \le ||x - y||$?

8. Let Y and Z be dense subspaces of a normed space X. Must $Y \cap Z$ be dense in X?

9. Give two inequivalent norms $\|.\|_1$ and $\|.\|_2$ on a vector space V such that the normed spaces $(V, \|.\|_1)$ and $(V, \|.\|_2)$ are isomorphic.

10. Let A and B be subspaces of a vector space V such that $V = A \oplus B$, and let $\|.\|_1$ and $\|.\|_2$ be two norms on V. If $\|.\|_1$ and $\|.\|_2$ are equivalent on A and equivalent on B, must they be equivalent?

11. Let Y be a proper closed subspace of a normed space X. Is there always a non-zero vector $x \in X$ that is 'orthogonal' to Y, in the sense that $||x + y|| \ge ||y||$ for all $y \in Y$?

12. Prove that no two of the spaces $l_1, l_2, l_{\infty}, c_0$ are isomorphic.

13. Does l_{∞} contain a subspace isometrically isomorphic to l_2 ?

⁺14. Construct two normed spaces X and Y such that d(X, Y) = 1 but X and Y are not isometrically isomorphic.