LINEAR ANALYSIS - EXAMPLES 4

H is a complex Hilbert space and $\mathcal{B}(H)$ the bounded linear operators from H to H.

1. Let $T \in \mathcal{B}(H)$ with $\||T|\|<1$. Show that there is $R \in \mathcal{B}(H)$ such that $R^{2}=1-T$.
2. Let $T \in \mathcal{B}(H)$. Give a definition of $f(T)$ for a rational function f with no poles in $\sigma(T)$, and prove that $\sigma(f(T))=\{f(\lambda): \lambda \in \sigma(T)\}$.
3. Let F be a closed subspace of H. Show that $F^{\perp \perp}=F$. Deduce that if $S \subset H$ then $S^{\perp \perp}=\overline{\operatorname{span}(S)}$, and that S has dense linear span in H iff $S^{\perp}=\{0\}$.
4. Let $\left(a_{n}\right)$ a bounded sequence in \mathbb{C} and $T: \ell^{2} \rightarrow \ell^{2},\left(x_{n}\right) \mapsto\left(a_{n} x_{n}\right)$. Show that T is bounded with $\||T|\|=\left\|\left(a_{n}\right)\right\|_{\infty}$. Find the eigenvalues, approximate eigenvalues and the continuous and residual spectrum of T. Show that T is compact if and only if $a_{n} \rightarrow 0$.
5. Show that $T \in \mathcal{B}(H)$ is normal iff $\|T v\|=\left\|T^{*} v\right\|$ for all $v \in H$.
6. Let $U \in \mathcal{B}(H)$ be a unitary operator. Show that $\sigma(U) \subset \mathbb{S}^{1}$.
7. Assuming H to be infinite-dimensional, are invertible operators dense in $\mathcal{B}(H)$?
8. Construct $S \in \mathcal{B}(H)$ self-adjoint with no eigenvalues, and, when H is separable, construct $C \in \mathcal{B}(H)$ compact with no eigenvalues. Is the latter possible if H not separable?
9. Assuming $\left(e_{n}\right)_{n \in \mathbb{Z}}$ to be a Hilbert basis, the bilateral shift operator is defined by $T e_{n}=e_{n+1}$. Find the spectrum of T.
10. Let $T \in \mathcal{B}(H)$ compact, show that $T^{*} \in \mathcal{B}(H)$ is compact.
11. Let $T \in \mathcal{B}(B)$ compact and $\lambda \notin\left(\sigma_{p}(T) \cup\{0\}\right)$. Show that $T-\lambda$ is bounded below.
12. Let $T \in \mathcal{B}(H)$ compact self-adjoint. For any $\lambda \in \mathbb{R} \backslash\{0\}$, show that: (a) Either the only solution to $T x=\lambda x$ is $x=0$ and $T-\lambda$ is invertible, (b) or $N_{\lambda}:=\operatorname{Ker}(T-\lambda) \neq\{0\}$ finite-dimensional, and given any $x_{0} \in H$ the equation $T x=\lambda x+x_{0}$ has a solution $x \in H$ iff $x_{0} \perp N_{\lambda}$ (and the space of solutions has $\operatorname{dim} N_{\lambda}$).
13. Let $U \in \mathcal{B}(H)$ unitary. Show that for all $x \in H$, the sequence $n^{-1} \sum_{k=0}^{n-1} U^{k}(x)$ converges to the orthogonal projection of x onto the closed subspace $F:=\operatorname{Ker}(U-\mathrm{Id})$.
*14. Given $T \in \mathcal{B}(H)$, define $W(T):=\{\langle T x, x\rangle,\|x\|=1\} \subset \mathbb{C}$. Show that $W(T)$ is convex and $\sigma(T) \subset \overline{W(T)}$. If T self-adjoint, show that $\overline{W(T)}$ is the convex hull of $\sigma(T)$.
