LINEAR ANALYSIS - EXAMPLES 4

H is a complex Hilbert space and $\mathcal{B}(H)$ the bounded linear operators from H to H.

- **1.** Let $T \in \mathcal{B}(H)$ with |||T||| < 1. Show that there is $R \in \mathcal{B}(H)$ such that $R^2 = 1 T$.
- **2.** Let $T \in \mathcal{B}(H)$. Give a definition of f(T) for a rational function f with no poles in $\sigma(T)$, and prove that $\sigma(f(T)) = \{f(\lambda) : \lambda \in \sigma(T)\}.$
- **3.** Let F be a closed subspace of H. Show that $F^{\perp \perp} = F$. Deduce that if $S \subset H$ then $S^{\perp \perp} = \overline{\operatorname{span}(S)}$, and that S has dense linear span in H iff $S^{\perp} = \{0\}$.
- **4.** Let (a_n) a bounded sequence in \mathbb{C} and $T: \ell^2 \to \ell^2$, $(x_n) \mapsto (a_n x_n)$. Show that T is bounded with $|||T||| = ||(a_n)||_{\infty}$. Find the eigenvalues, approximate eigenvalues and the continuous and residual spectrum of T. Show that T is compact if and only if $a_n \to 0$.
- **5.** Show that $T \in \mathcal{B}(H)$ is normal iff $||Tv|| = ||T^*v||$ for all $v \in H$.
- **6.** Let $U \in \mathcal{B}(H)$ be a unitary operator. Show that $\sigma(U) \subset \mathbb{S}^1$.
- 7. Assuming H to be infinite-dimensional, are invertible operators dense in $\mathcal{B}(H)$?
- **8.** Construct $S \in \mathcal{B}(H)$ self-adjoint with no eigenvalues, and, when H is separable, construct $C \in \mathcal{B}(H)$ compact with no eigenvalues. Is the latter possible if H not separable?
- **9.** Assuming $(e_n)_{n\in\mathbb{Z}}$ to be a Hilbert basis, the *bilateral shift operator* is defined by $Te_n=e_{n+1}$. Find the spectrum of T.
- **10.** Let $T \in \mathcal{B}(H)$ compact, show that $T^* \in \mathcal{B}(H)$ is compact.
- 11. Let $T \in \mathcal{B}(B)$ compact and $\lambda \notin (\sigma_p(T) \cup \{0\})$. Show that $T \lambda$ is bounded below.
- **12.** Let $T \in \mathcal{B}(H)$ compact self-adjoint. For any $\lambda \in \mathbb{R} \setminus \{0\}$, show that: (a) Either the only solution to $Tx = \lambda x$ is x = 0 and $T \lambda$ is invertible, (b) or $N_{\lambda} := \text{Ker}(T \lambda) \neq \{0\}$ finite-dimensional, and given any $x_0 \in H$ the equation $Tx = \lambda x + x_0$ has a solution $x \in H$ iff $x_0 \perp N_{\lambda}$ (and the space of solutions has dim N_{λ}).
- **13.** Let $U \in \mathcal{B}(H)$ unitary. Show that for all $x \in H$, the sequence $n^{-1} \sum_{k=0}^{n-1} U^k(x)$ converges to the orthogonal projection of x onto the closed subspace F := Ker(U Id).
- *14. Given $T \in \mathcal{B}(H)$, define $W(T) := \{\langle Tx, x \rangle, \|x\| = 1\} \subset \mathbb{C}$. Show that W(T) is convex and $\sigma(T) \subset \overline{W(T)}$. If T self-adjoint, show that $\overline{W(T)}$ is the convex hull of $\sigma(T)$.