LINEAR ANALYSIS - EXAMPLES 4

The "*" questions are optional and (if so) should be attempted last. B and H denote respectively non-zero complex Banach or Hilbert spaces.

1. Let $T \in \mathcal{B}(B)$ with $\||T|\|<1$. Show that there is $U \in \mathcal{B}(B)$ such that $S^{2}=I-T$.
2. Let $T \in \mathcal{B}(B)$. Give a definition of $f(T)$ for a rational function f with no poles in $\sigma(T)$, and prove that $\sigma(f(T))=\{f(\lambda): \lambda \in \sigma(T)\}$.
3. Let F be a closed subspace of H. Show that $F^{\perp \perp}=F$. Deduce that if $S \subset H$ then $S^{\perp \perp}=\overline{\operatorname{span}(S)}$, and that S has dense linear span in H iff $S^{\perp}=\{0\}$.
4. Let $\left(a_{n}\right) \in \ell^{\infty}$ and $T: \ell^{2} \rightarrow \ell^{2},\left(x_{n}\right) \mapsto\left(a_{n} x_{n}\right)$. Show that T is bounded with $\left\|\left||T|\|=\|\left(a_{n}\right) \|_{\infty}\right.\right.$. Find the eigenvalues, approximate eigenvalues and the continuous and residual spectrum of T. Show that T is compact if and only if $a_{n} \rightarrow 0$.
5. Show that $T \in \mathcal{B}(H)$ is normal iff $\|T x\|=\left\|T^{*} x\right\|$ for all $x \in H$.
6. Let $U \in \mathcal{B}(H)$ be a unitary operator. Show that $\sigma(U) \subset \mathbb{S}^{1}$.
7. Given H infinite-dimensional Hilbert space, are invertible operators dense in $\mathcal{B}(H)$?
8. Construct $S, C \in \mathcal{B}(H)$, respectively self-adjoint and compact, with no eigenvalues.
9. Given H complex Hilbert space with orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{Z}}$, the bilateral shift operator is defined by $T e_{n}=e_{n+1}$. Find the spectrum of T.
10. Let $T \in \mathcal{B}(H)$ compact, show that $T^{*} \in \mathcal{B}(H)$ is compact.
11. Let $T \in \mathcal{B}(B)$ compact and $\lambda \notin\left(\sigma_{p}(T) \cup\{0\}\right)$. Show that $T-\lambda$ is bounded below.
12. Let $T \in \mathcal{B}(H)$ compact self-adjoint. For any $\lambda \in \mathbb{R} \backslash\{0\}$, show that: (a) Either the only solution to $T x=\lambda x$ is $x=0$ and $T-\lambda$ is invertible, (b) or $N_{\lambda}:=\operatorname{ker}(T-\lambda) \neq\{0\}$ finite-dimensional, and given any $x_{0} \in H$ the equation $T x=\lambda x+x_{0}$ has a solution $x \in H$ iff $x_{0} \perp N_{\lambda}$ (and the space of solutions has $\operatorname{dim} N_{\lambda}$).
13. Let $U \in \mathcal{B}(H)$ unitary. Show that for all $x \in H$, the sequence $n^{-1} \sum_{k=0}^{n-1} U^{k}(x)$ converges to the orthogonal projection of x onto the closed subspace $F:=\operatorname{Ker}(U-\mathrm{Id})$.
*14. Given $T \in \mathcal{B}(H)$, define $W(T):=\{\langle T x, x\rangle,\|x\|=1\} \subset \mathbb{C}$. Show that $W(T)$ is convex and $\sigma(T) \subset \overline{W(T)}$. If T self-adjoint, show that $\overline{W(T)}$ is the convex hull of $\sigma(T)$.
*15. Given $T \in \mathcal{B}(B)$ define $r_{1}(T):=\sup _{\lambda \in \sigma(T)}|\lambda|$. Show that the limit $r_{2}(T):=$ $\lim _{n \rightarrow+\infty}\| \| T^{n}\| \|^{\frac{1}{n}}$ exists and equals $\inf _{n \geq 1}\left\|\mid T^{n}\right\| \|^{\frac{1}{n}}$, and that $r_{1}(T)=r_{2}(T)$. Given $S, T \in \mathcal{B}(B)$ that commute, show that $r(\bar{S}+T) \leq r(S)+r(T)$ and $r(S T) \leq r(S) r(T)$. Construct non-commuting operators violating these inequalities. Show that $r(T)=$ $\|||T \||$ when T is normal, and deduce that $r(S+T) \leq r(S)+r(T)$ also holds when S and T are normal.
*16. Let $T \in \mathcal{L}\left(\ell^{2}\right)$ defined by $T e_{m}=\sum_{n \geq 1} a_{m n} e_{n}$ where $\left(a_{m n}\right)_{m, n=1}^{\infty}$ is such that (condition 1) rows and columns form a bounded set in ℓ^{2}. Must T be bounded? Prove that T is bounded if (condition 2) these rows and columns form a bounded set in ℓ^{1}. Prove that T is compact if (condition 3) $\sum_{m, n}\left|a_{m n}\right|^{2}$ is finite. Are there infinite matrices $\left(a_{m n}\right)$ giving rise to a bounded operator T while failing both conditions 2 and 3?
