LINEAR ANALYSIS – EXAMPLES 2

Michaelmas 2019

- 1. (Completion of Normed Spaces) Let X be a normed space and let \widetilde{X} be the set of all Cauchy sequences $(x_n)_{n=1}^{\infty}$ in X quotiented by the equivalence relation $(x_n)_{n=1}^{\infty} \sim$ $(y_n)_{n=1}^{\infty} \Leftrightarrow ||x_n - y_n|| \to 0$. Write $[(x_n)]$ for the equivalence class of $(x_n)_{n=1}^{\infty}$ and make \widetilde{X} into a vector space by defining $\lambda[(x_n)] + \mu[(y_n)] = [(\lambda x_n + \mu y_n)]$. Show that the norm on \widetilde{X} defined by $\|[(x_n)]\| := \lim_{n \to \infty} \|x_n\|$ is complete and that X is isometrically isomorphic to a dense subset of \widetilde{X} .
- 2. Prove carefully that c_0^* is isometrically isomorphic to l_1 and that l_1^* is isometrically isomorphic to l_{∞} .
- 3. A linear functional T on l_{∞} is said to be *positive* if $T(y) \ge 0$ whenever $y_n \ge 0$ for all n. Prove that a positive linear functional on l_{∞} is continuous.
- 4. Let T be a linear functional on a normed space X. Prove that if T is continuous then ker T is closed in X, while if T is discontinuous then ker T is dense in X.
- 5. Let X be a (non-empty) countable complete metric space. Prove that X has an isolated point (a point $x \in X$ such that $\{x\}$ is open).
- 6. Let $(f_n)_{n=1}^{\infty} \in C([0,1])$ and suppose that for each $x \in [0,1]$, we have $\sup_n |f_n(x)| < \infty$. Show that there is a (non-empty) open subinterval $(a,b) \subset [0,1]$ for which $\sup_n \sup_{x \in (a,b)} |f_n(x)| < \infty$.
- 7. Let $1 < p, q < \infty$ with 1/p + 1/q = 1, and let $y = (y_n)$ be a sequence of reals. Show that if $\sum_{n=1}^{\infty} x_n y_n$ converges for every $x \in l_p$, then $y \in l_q$.
- 8. The 'L^p-norm' on C([0,1]) is $||f||_p := \left(\int_0^1 |f(x)|^p dx\right)^{1/p}$. Show that $||f||_p \le ||f||_{\infty}$. Deduce that $||\cdot||_p$ is not complete on C([0,1]). (The completion - in the sense of Q1. - is the space $L^p([0,1])$.)
- 9. Let $\|\cdot\|$ be a complete norm on C([0,1]) such that for each $x \in [0,1]$, the functional $f \mapsto f(x)$ is continuous. Show that $\|\cdot\|$ is equivalent to $\|\cdot\|_{\infty}$.
- 10. Does there exist a complete norm on c_{00} ?
- 11. Let $f: (0, \infty) \to \mathbf{R}$ be a continuous function such that for any x > 0 we have $f(nx) \to 0$ as $n \to \infty$ as $n \to \infty$. Show that $f(x) \to 0$ as $x \to \infty$.

SBK