LINEAR ANALYSIS Example Sheet 2

1. Let (X, dx), (Y, dy) be metric spaces. Define d on X XY by d((x1,y1), (2, y2)) = dx (21, x2)+
dy (y1,y2). Show that d makes X x Y into a metric space.

2. Show that if ¢ : X — Y is continuous, then the graph T' of ¢, defined by I' = {(z, ¢(z))},
is closed.

3. Give an example of metric spaces X and Y, and a map ¢ : X — Y, such that ¢ is not
continuous, yet the graph of ¢ is closed and bounded.

4. Let X be a metric space. Show that the following are equivalent: X is compact, X is
countably compact, X is sequentially compact. (X is countably compact if every countable
open cover has a finite subcover.)

5. Let X be a normed vector space, and Y a closed proper subspace. Show that for all € > 0,
there exists an z € X, such that ||z|| = 1, and

inf |jz —y|| >1-
nflle—yll21-e

6. Use the above two exercises to give another proof that if X is a normed vector space and
{z : ||z|| <1} is compact, then X is finite dimensional.

7. Use the Hahn-Banach theorem to show that (lo)* # (5.
8. Use a category argument to show problem 15 from Example Sheet 1.

9. Let X be a topological space. Show that the space C'(X) of complex-valued bounded con-
tinuous functions is a Banach space, with the sup norm ||f|| = sup,cx |f(z)].

10. Prove the following complex version of the Tietze-Urysohn extension theorem: Let X be
a normal topological space, and let A C X be closed. Suppose f : A — C is continuous
with ||f|| < co. Then there exists a continuous function f : X — C such that f|4 = f, and

1F11 = 1171

11. Show that there exist continuous nowhere differentiable functions f : [0,1] — R. Hint:
Exhibit the set of nowhere differentiable functions as a countable intersection of dense open
sets in C[0, 1].

12. Let T denote the unit circle in the usual 2-plane, and let C'(T") denote the space of complex-
valued continuous functions on 7T'. Since T is compact, by Exercise 9, C(T') is a Banach space.
We will parametrize T by the angular variable ¢ € [—m,7).! Define,

n

— Z eikt

and define the operator
Sn:C(T) — C(T) (1)
by .
(Su(N)(@) = 5= [ f(O) Dl — )it

li.e., one can think of C(T') as the space of continuous periodic functions on R with period 27
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The function S,(f) is called the n’th partial sum of the Fourier series of f, i.e.

Suf) = S F(k)ete,

k=—n
where for k € Z,
; Lo —ikt
f) =5 [ fye e

In the next few exercises, we shall examine the question of whether this series necessarily
converges to f.

In this exercise, show that S, is indeed a linear operator with target as given by (1). Show
that each ||S,|| < oco. Let ¢, denote the composition of S, with the evaluation-at-0 map
eg : C(T) — C given by ey(f) = f(0). Show that ||¢,|| < co. Thus ¢,, € C(T)*.

13. Show that in fact,
. 1
D,(t) = sin(n + 5)t
sin(t/2)

14. Use this to show that ||D,|| — oo as n — oco. Deduce that ||¢,|| — oo. Using the Banach-
Steinhaus Theorem, deduce that there exists a function f € C(T') whose Fourier series diverges
at 0.

15. Show that in fact, there exists a dense set F C C(T), such that for each f € F, there exists
a dense set Sy C (—m, m) such that the Fourier series of f diverges everywhere on Sj.

16. Let f € C(T). Show that f(n) — 0, where f is defined by (2). Thus, f — f defines a
linear map A : C(T) — ¢y, where c; is defined? as the Banach space of functions Z — C, with
norm given by

|19/lo0 = sup [g(n)].
neZ

17. For those who know about Lebesgue measure: Define the space L'(T) as the set of all
Lebesgue integrable functions on 7', modulo null functions. Define

Il = [ 7@l

This norm makes L' into a Banach space. Show that A defined by f — f, where again f is
defined by (2), taken now in the sense of Lebesgue, maps

ALY > ¢.
Show moreover that this map is bounded and injective.

18. Show that D, (t) defined previously satisfies || D,||; — oo, while on the other hand ||A(D,,)|| =
1. Deduce from the inverse mapping theorem that 7" is not surjective.

For comments, email M.Dafermos@dpmms . cam.ac.uk

2Compare with the definition in Example Sheet 1.
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