

1. Let X be a normed vector space, and let $T : X \rightarrow X$, $S : X \rightarrow X$ be bounded linear maps. Show that $T \circ S$ is bounded with

$$\|T \circ S\| \leq \|T\| \cdot \|S\|.$$

Show by specific example that equality need not hold above.

2. Give an example of Banach spaces X and Y , and a linear map $T : X \rightarrow Y$ such that $\|Tx\| \leq \|T\|$ for all $\|x\| \leq 1$.

3. Let $T : X \rightarrow Y$ and $S : Y \rightarrow Z$ be bounded linear maps. Show that $(S \circ T)^* = T^* \circ S^*$.

4. Let $p > 0$, and define the space l_p of all complex sequences such that $\sum_i |x_i|^p < \infty$. Define

$$\|x\|_p = \left(\sum_i |x_i|^p \right)^{\frac{1}{p}}. \quad (1)$$

For $1 > p > 0$, is this a vector space? Again, for $1 > p > 0$, is this a normed vector space with norm defined by (1)?

5. Define the space l_∞ consisting of all sequences $\{x_i\}$ such that $\sup |x_i| < \infty$, with

$$\|\{x_i\}\|_\infty = \sup |x_i|.$$

Show that this defines a Banach space. Recall that a metric space is said to be separable if there exists a countable dense set. Show that l_∞ is not separable.

6. Let $T : V \rightarrow W$ be a linear map between finite dimensional normed vector spaces, let e_i denote a basis for V , let \hat{e}_j denote a basis for W , and let a_{ij} denote the components of the matrix representing T in this basis. Determine a basis for W^* and V^* for which T^* has a nice form, and give that form.

7. Let $0 \leq t \leq 1$. Let a and b be nonnegative real numbers. Prove $a^t b^{1-t} \leq ta + (1-t)b$.

8. Let $p \geq 1$, and define q by the relation $p^{-1} + q^{-1} = 1$, with the convention that if $p = 1$, $q = \infty$. We call p and q conjugate exponents. Show that if $p > 1$, and if $\{x_i\}$ and $\{y_i\}$ are elements of l_p and l_q , respectively, then $\{x_i y_i\}$ is in l_1 and *Hölder's inequality* holds, i.e.

$$\|x_i y_i\|_1 \leq \|x_i\|_p \|y_i\|_q.$$

9. Show that l_p , for all $p \geq 1$, is a Banach space with norm defined by (1), i.e. show that l_p is a vector space, that (1) defines a norm, and that the induced metric space is complete.

10. Show that for $1 \leq p < \infty$, $l_p^* = l_q$.

11. Denote by c_0 the subset of l_∞ , consisting of all sequences tending to 0. Show that $c_0^* = l_1$.

12. Let X be a vector space, and let $\{p_i\}$ be a countable collection of seminorms, such that for all $x \in X$, there exists an i such that $p_i(x) > 0$. Fix $1 \leq p \leq \infty$, and define

$$\|x\| = \|\{p_i(x)\}\|_p,$$

where the right hand side denotes the l_p norm. Let Y denote the subset of X consisting of all x such that the above is finite. Does $\|\cdot\|$ endow Y with the structure of a normed vector space?

13. Let X be a normed vector space such that its dual is reflexive. Show that X itself is reflexive.

14. Recall the space l_2^n , i.e. the normed vector space \mathbf{C}^n with norm defined by

$$|(x_1, \dots, x_n)| = \sqrt{\sum_{i=1}^n |x_i|^2}.$$

Let $T : X \rightarrow X$ be a linear map. Describe $\|T\|$ algebraically.

15. Let V be a vector space with a countable basis. Show that V cannot be made into a Banach space.

For comments, email M.Dafermos@dpmms.cam.ac.uk