1. For which n and m is the complete bipartite graph $K_{n, m}$ Hamiltonian? Is the Petersen graph Hamiltonian?
2. Let G be a graph of order n with $e(G)>\binom{n}{2}-(n-2)$. Prove that G is Hamiltonian.
3. Let G be a bipartite graph with vertex classes X, Y. Show that if G has a matching from X to Y then there exists $x \in X$ such that every edge incident with x extends to a matching from X to Y.
4. Let G be a connected bipartite graph with vertex classes X, Y. Show that every edge of G extends to a matching from X to Y if and only if $|\Gamma(A)|>|A|$ for every $A \subset X$, $A \neq \emptyset, X$.
5. Let A be a matrix with each entry 0 or 1 . Prove that the minimum number of rows and columns containing all the 1 s of A equals the the maximum number of 1 s that can be found with no two in the same row or column.
6. For $r \leq n$, an $r \times n$ Latin rectangle is an $r \times n$ matrix, with each entry from $\{1, \ldots, n\}$, such that no two entries in the same row or column are the same. Prove that every $r \times n$ Latin rectangle may be extended to an $n \times n$ Latin square.
7. Show that we always have $\kappa(G) \leq \lambda(G)$. For any positive integers $k \leq l$, construct a graph G with $\kappa(G)=k$ and $\lambda(G)=l$.
8. For a set $B \subset V(G)$ and a vertex a not in B, an $a-B$ fan is a family of $|B|$ paths from a to B, disjoint except at a. Show that a graph G (with $|G|>k$) is k-connected if and only if there is an $a-B$ fan for every $B \subset V(G)$ with $|B|=k$ and every vertex a not in B.
9. Let G be a k-connected graph $(k \geq 2)$, and let x_{1}, \ldots, x_{k} be vertices of G. Show that there is a cycle in G containing all the x_{i}.
10. For each $r \geq 3$, construct a graph G such that G does not contain K_{r} but G is not ($r-1$)-partite.
11. A deleted K_{r} consists of a K_{r} from which an edge has been removed. Show that if G is a graph of order $n(n \geq r+1)$ with $e(G)>e\left(T_{r-1}(n)\right)$ then G contains a deleted K_{r+1}.
12. Let x_{1}, \ldots, x_{n} be points in the plane such that no two of them are more than distance 1 apart. Prove that, of the $\binom{n}{2}$ possible pairs of points, at most $n^{2} / 3$ are at distance greater than $1 / \sqrt{2}$.
${ }^{+}$13. Let G be a (possibly infinite) bipartite graph, with vertex classes X, Y, such that $|\Gamma(A)| \geq|A|$ for every $A \subset X$. Give an example to show that G need not contain a matching from X to Y. Show however that if G is countable and $d(x)<\infty$ for every $x \in X$ then G does contain a matching from X to Y. Does this remain true if G is uncountable?
${ }^{+}$14. Let G be an r-regular graph on $2 r+1$ vertices. Prove that G is Hamiltonian.
