GRAPH THEORY - EXAMPLE SHEET 1

Michaelmas 2022
(1) Show that a graph G which contains an odd circuit, contains an odd cycle.
(2) Show there are infinitely many planar graphs for which $e(G)=3(|G|-2)$. Can you give a nice description of all graphs that satisfy this equality?
(3) Show that every graph G, with $|G| \geqslant 2$, has two vertices of the same degree.
(4) Show that in every connected graph $|G|>2$ there exists a vertex so that $G-v$ is connected.
(5) Show that if G is an acylic and $|G| \geqslant 1$ then $e(G) \leqslant n-1$.
(6) The degree sequence of a graph $G=\left(\left\{x_{1}, \ldots, x_{n}\right\}, E\right)$ is the sequence $d\left(x_{1}\right), \ldots, d\left(x_{n}\right)$.

For $n \geqslant 2$ let $1 \leqslant d_{1} \leqslant d_{2} \leqslant \cdots \leqslant d_{n}$ be integers. Show that $\left(d_{i}\right)_{i=1}^{n}$ is a degree sequence of a tree if and only if $\sum_{i=1}^{n} d_{i}=2 n-2$.
(7) Let T_{1}, \ldots, T_{k} be subtrees of a tree T. Show that if $V\left(T_{i}\right) \cap V\left(T_{j}\right) \neq \emptyset$ for all $i, j \in[k]$ then $V\left(T_{1}\right) \cap \cdots \cap V\left(T_{k}\right) \neq \emptyset$.
(8) The average degree of a graph $G=(V, E)$ is $n^{-1} \sum_{x \in V} d(x)$. Show that if the average degree of G is d then G contains a subgraph with minimum degree $\geqslant d / 2$.
(9) Say that a graph $G=(V, E)$ can be decomposed into cycles if E can be partitioned $E=E_{1} \cup \ldots \cup E_{k}$, where each E_{i} is the edge set of a cycle. Show that G can be decomposed into cycles if and only if all degrees of G are even.
(10) The clique number of a graph G is the largest t so that G contains a complete graph on t vertices. Show that the possible clique numbers for a regular graph on n vertices are $1,2, \ldots,\lfloor n / 2\rfloor$ and n.
(11) Show that the Petersen graph (look it up) is non-planar.
(12) Let $G=(V, E)$ be a graph. Show that there is a partition $V=A \cup B$ so all the vertices in the graphs $G[A]$ and $G[B]$ are of even degree.
(13) An $n \times n$ Latin square (resp. $r \times n$ Latin rectangle) is an $n \times n$ (resp. $r \times n$) matrix, with each entry from $\{1, \ldots, n\}$, such that no two entries in the same row or column are the same. Prove that every $r \times n$ Latin rectangle may be extended to an $n \times n$ Latin square.
$(14)\left(^{*}\right)$ Let $G=(X \cup Y, E)$ be a countably infinite bipartite graph with the property that $|N(A)| \geqslant|A|$ for all $A \subseteq X$. Give an example to show that G need not contain a matching from X to Y. On the other hand, show that if all of the degrees of G are finite then G does contain a matching from X to Y. Does this remain true if G is uncountable and all degrees of X are finite (while degrees in Y have no restriction)?
(15) $\left(^{*}\right)$ Let $M=\left(X, d_{M}\right)$ be a metric space. We say that a function $f: X \rightarrow \mathbb{R}^{2}$ has distortion $\leqslant D$ if there exists an $r>0$ so that

$$
r d_{M}(x, y) \leqslant\|f(x)-f(y)\|_{2} \leqslant \operatorname{Dr}_{M}(x, y)
$$

Show that there is a a metric space $M=\left(\left\{x_{1}, \ldots, x_{n}\right\}, d_{M}\right)$ on n points so that every function $f: M \rightarrow \mathbb{R}^{2}$ has distortion $\geqslant c n^{1 / 2}$, for some constant $c>0$. Does there exist a metric space $M=\left(\left\{x_{1}, \ldots, x_{n}\right\}, d_{M}\right)$ on n points so that every function $f: M \rightarrow \mathbb{R}^{2}$ has distortion $\geqslant c n$, for some constant $c>0$?

