GRAPH THEORY - EXAMPLE SHEET 1

Michaelmas 2022

Julian Sahasrabudhe

- (1) Show that a graph G which contains an odd circuit, contains an odd cycle.
- (2) Show there are infinitely many planar graphs for which e(G) = 3(|G| 2). Can you give a nice description of all graphs that satisfy this equality?
- (3) Show that every graph G, with $|G| \ge 2$, has two vertices of the same degree.
- (4) Show that in every connected graph |G| > 2 there exists a vertex so that G v is connected.
- (5) Show that if G is an acylic and $|G| \ge 1$ then $e(G) \le n-1$.
- (6) The degree sequence of a graph G = ({x₁,...,x_n}, E) is the sequence d(x₁),...,d(x_n). For n≥ 2 let 1 ≤ d₁ ≤ d₂ ≤ ··· ≤ d_n be integers. Show that (d_i)ⁿ_{i=1} is a degree sequence of a tree if and only if ∑ⁿ_{i=1} d_i = 2n 2.
- (7) Let T_1, \ldots, T_k be subtrees of a tree T. Show that if $V(T_i) \cap V(T_j) \neq \emptyset$ for all $i, j \in [k]$ then $V(T_1) \cap \cdots \cap V(T_k) \neq \emptyset$.
- (8) The average degree of a graph G = (V, E) is $n^{-1} \sum_{x \in V} d(x)$. Show that if the average degree of G is d then G contains a subgraph with minimum degree $\ge d/2$.
- (9) Say that a graph G = (V, E) can be *decomposed* into cycles if E can be partitioned $E = E_1 \cup \ldots \cup E_k$, where each E_i is the edge set of a cycle. Show that G can be decomposed into cycles if and only if all degrees of G are even.
- (10) The *clique number* of a graph G is the largest t so that G contains a complete graph on t vertices. Show that the possible clique numbers for a regular graph on n vertices are $1, 2, ..., \lfloor n/2 \rfloor$ and n.
- (11) Show that the Petersen graph (look it up) is non-planar.
- (12) Let G = (V, E) be a graph. Show that there is a partition $V = A \cup B$ so all the vertices in the graphs G[A] and G[B] are of even degree.
- (13) An $n \times n$ Latin square (resp. $r \times n$ Latin rectangle) is an $n \times n$ (resp. $r \times n$) matrix, with each entry from $\{1, \ldots, n\}$, such that no two entries in the same row or column are the same. Prove that every $r \times n$ Latin rectangle may be extended to an $n \times n$ Latin square.
- (14) (*) Let $G = (X \cup Y, E)$ be a countably infinite bipartite graph with the property that $|N(A)| \ge |A|$ for all $A \subseteq X$. Give an example to show that G need not contain a matching from X to Y. On the other hand, show that if all of the degrees of G are finite then G does contain a matching from X to Y. Does this remain true if G is uncountable and all degrees of X are finite (while degrees in Y have no restriction)?
- (15) (*) Let $M = (X, d_M)$ be a metric space. We say that a function $f : X \to \mathbb{R}^2$ has distortion $\leq D$ if there exists an r > 0 so that

$$rd_M(x,y) \leqslant ||f(x) - f(y)||_2 \leqslant Drd_M(x,y).$$

Show that there is a a metric space $M = (\{x_1, \ldots, x_n\}, d_M)$ on n points so that every function $f : M \to \mathbb{R}^2$ has distortion $\ge cn^{1/2}$, for some constant c > 0. Does there exist a metric space $M = (\{x_1, \ldots, x_n\}, d_M)$ on n points so that every function $f : M \to \mathbb{R}^2$ has distortion $\ge cn$, for some constant c > 0?