GRAPH THEORY - EXAMPLE SHEET 4

Michaelmas 2022
Julian Sahasrabudhe
(1) For $p \gg n^{-2}$, let $G \sim G(n, p)$. Show that for all $\varepsilon>0$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|e(G)-p\binom{n}{2}\right|>\varepsilon p n^{2}\right)=0
$$

Use this to finish the sketch seen in class of the fact that $Z(n, t) \geqslant(1 / 2) n^{2-2 / t}$, for sufficiently large n. [Of course, we also saw a proof of the better bound $Z(n, t)>(1 / 2) n^{2-2 /(t+1)}$, but this was using the "alteration method".]
(2) Let $G \sim G(n, p)$. Show that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G \supset K_{4}\right)=\left\{\begin{array}{l}
1 \text { if } p \gg n^{-2 / 3} \\
0 \text { if } p \ll n^{-2 / 3}
\end{array}\right.
$$

What is the corresponding statement if we replace K_{4} with K_{r} ?
(3) Let H be the graph on 4 vertices $x_{1}, x_{2}, x_{3}, x_{4}$ where x_{1}, x_{2}, x_{3} form a triangle, $x_{4} x_{1} \in E(H)$ and there are no other edges. Let $G \sim G(n, p)$. Show that $\lim _{n \rightarrow \infty} \mathbb{P}(G \supset H)=1$ when $p \gg n^{-1}$.
(4) Give an example of a connected graph H and a $p=p(n)$ so that the expected number of copies of H in $G \sim G(n, p)$ tends to infinity as $n \rightarrow \infty$ but $\mathbb{P}(G \supset H) \leqslant 1 / 2$, for all sufficiently large n.
(5) A dominating set in a graph G is a set $S \subseteq V(G)$ with the property that every vertex $v \in V(G) \backslash S$ is adjacent to a vertex in S. For $k \geqslant 3$, let G be a k-regular graph. Show that there is a dominating set of size at most $10 n(\log k) / k$ in G.
(6) Calculate the eigenvalues of K_{n} and $K_{m, n}$.
(7) Prove that the matrix J (all of whose entries are 1) is a polynomial in the adjacency matrix of a graph G if and only if G is regular and connected.
(8) Let G be a graph in which every edge is in a unique triangle and every non-edge is a diagonal of a unique 4 -cycle. Show that G is k-regular, for some k, and that the number of vertices of G is $k^{2} / 2+1$. Show also that $k \in\{2,4,14,22,112,994\}$.
(9) Let $G(\mathbb{N}, 1 / 2)$ be the random graph defined on vertex set \mathbb{N} where every edge is included independently with probability $1 / 2$. If two graphs G_{1}, G_{2} are drawn independently from $G(\mathbb{N}, 1 / 2)$ show that G_{1} is isomorphic to G_{2} with probability 1.
(10) Let $S \subset[0,1] \times[0,1]$ be a finite set of points. Define $T(S)$ to be the minimum volume of any triangle formed by some three distinct points $x, y, z \in S$. For all $n \geqslant 3$, show that there is a set of n points $S_{n} \subset[0,1] \times[0,1]$ with $T\left(S_{n}\right) \geqslant c / n^{2}$, where $c>0$ is an absolute constant.
(11) Show that there exists $c>0$ so that the following holds. Let $p=n^{-2 / 3}$ and $G \sim G(n, p)$. Then G contains $\geqslant c n$ vertex-disjoint triangles with probability tending to 1 as $n \rightarrow \infty$.
(12) $\left(^{*}\right)$ Can the edges of K_{10} be decomposed into 3 disjoint copies of the Petersen graph?

