GRAPH THEORY - EXAMPLE SHEET 3

Michaelmas 2021
(1) By considering the graph on \mathbb{Z}_{17} in which x is joined to y if $x-y$ is a square modulo 17 , show that $R(4)=18$.
(2) Prove that $R_{3}(3,3,3) \leqslant 17$.
(3) Let $\left\{I_{i}\right\}_{i \in \mathbb{N}}$ be a countable collection of closed, non-empty, finite intervals in \mathbb{R}. Show that either there exists an infinite collection of pairwise disjoint intervals or there exists a $x \in \mathbb{R}$ that is covered by infinitely many intervals.
(4) Prove the following statement. For every $t \geqslant 3$, there exists a $n_{0}(t)$ so that every $S \subseteq \mathbb{R}^{2}$ with (a) $|S| \geqslant n_{0}(t)(\mathrm{b})$ no three points on a line contains $x_{1}, \ldots, x_{t} \in S$ which are in convex position.
(5) A tournament is an oriented complete graph: every edge $\{u, v\} \in E\left(K_{n}\right)$ is given an unique direction, (u, v) or (v, u). Show that a tournament contains adirected path of length $n-1$: a sequence of distinct vertices $x_{1} x_{2}, \ldots, x_{n}$ so that $\left(x_{i}, x_{i+1}\right) \in E$ for all $1 \leqslant i \leqslant n-1$.
(6) Show that $R_{k}(3, \ldots, 3) \leqslant\lceil e \cdot k!\rceil$, where $e=2.718 \ldots$ is Euler's number.
(7) Show that if G is a graph then there exists a bipartite subgraph of G with at least $e(G) / 2$ edges. Use this to show that for all $t \in \mathbb{N}$ there exists a $c>0, n_{0}(t) \in \mathbb{N}$ so that

$$
\operatorname{ex}\left(n, K_{t, t}\right) \leqslant c n^{2-1 / t}
$$

for all $n \geqslant n_{0}(t)$.
(8) Given n distinct points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$ and n distinct lines $\ell_{1}, \ldots, \ell_{n} \subseteq \mathbb{R}^{2}$, show that there are at most $10 n^{3 / 2}$ point-line incidences, that is

$$
\left|\left\{(i, j): x_{i} \in \ell_{j}\right\}\right|<10 n^{3 / 2}
$$

(9) An independent set in a graph is a collection of vertices where no two are adjacent. Show that if $G=(V, E)$ is a graph then there is an independent set $I \subseteq V$ with

$$
|I| \geqslant \sum_{x \in V} \frac{1}{d(x)+1}
$$

Now use this result to give another proof of Turán's Theorem. [Hint: for the first part, consider a random ordering of V]
(10) For $\varepsilon>0$, let G be a graph with $|G|=n$ and $e(G)>(1+\varepsilon) n^{2} / 4$ edges. Show that G contains at least $c \varepsilon n^{3}$ triangles, for some constant $c>0$. Use this to give a different proof of the Erdős-Stone theorem in the case $\chi(H)=3$.
(11) A bow-tie is the graph on 5 vertices consisting of two triangles which share a single vertex. Show that if $|G|>5$ and $e(G)>\frac{n^{2}}{4}+1$ then G contains a bow-tie.
(12) $\mathbf{(*}^{*}$) Let G be a 3-regular graph and let $e \in E$. Show that G has an even number of Hamilton cycles through e (quick reminder: 0 is an even number).
(13) $\left(^{*}\right)$ Among a group of n dons, any two have exactly one mutual friend. Show that some don is friends with all the others

