GRAPH THEORY - EXAMPLE SHEET 2

Michaelmas 2022
Julian Sahasrabudhe
(1) For a graph G, show that $\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$.
(2) Let G be a graph. Show that $e(G) \geqslant\binom{\chi(G)}{2}$.
(3) Let G be a k-connected graph and let y, x_{1}, \ldots, x_{k} be distinct vertices in G. Show that there exists paths P_{1}, \ldots, P_{k}, where P_{i} is a $y-x_{i}$ path and P_{1}, \ldots, P_{k} have no vertices in common, apart from the vertex y.
(4) An independent set in a graph $G=(V, E)$ is a subset $I \subset V$ so that $x \nsim y$ for all $x, y \in I$. Let $G=(V, E)$ be a connected graph with $\Delta(G) \leqslant 3$ and $|V| \geqslant 10$. Show that there exists an independent set $I \subseteq V$ so that every odd cycle in G intersects I.
(5) Determine the chromatic polynomial of the n-cycle C_{n}.
(6) Let G be a graph on n vertices, show that the coefficients of the the chromatic polynomial P_{G} alternate in sign. That is, if $P_{G}=\sum_{i=0}^{n} c_{i} t^{i}$, Then $c_{n-j} \geqslant 0$ for even j and $c_{n-j} \leqslant 0$ for odd j. Also show that if G has m edges and k triangles then $c_{n-2}=\binom{m}{2}-k$.
(7) Determine $\chi^{\prime}\left(K_{n, n}\right)$. Determine $\chi^{\prime}\left(K_{n}\right)$.
(8) Let G be a graph that has an orientation where the longest directed path has length t (that is, a sequence of oriented edges $\left.\left(v_{1}, v_{2}\right), \ldots,\left(v_{t}, v_{t+1}\right)\right)$. Then $\chi(G) \leqslant t+1$.
(9) Can $K_{4,4}$ be drawn on the torus? What about $K_{5,5}$?
(10) Let G be a bipartite graph with maximum degree Δ. Must we have $\chi^{\prime}(G)=\Delta(G)$?
(11) Let $G=(V, E)$ be a graph where V, E are countably infinite. Show that $\chi(G) \leqslant k$ if and only if $\chi(H) \leqslant k$ for every finite subgraph H of G.
(12) For $k \geqslant 2$, let $G=(V, E)$ be a k-connected graph and let $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq V$. Show that there exists a cycle containing each of the vertices x_{1}, \ldots, x_{k}.
(13) For each $r \geqslant 2$, construct a graph G that does not contain a K_{r+1} and $\chi(G)>r$.
(14) A graph is outer-planar if it can be drawn in the plane so that all of its vertices are on the infinite face. Articulate a conjecture of the form "Let G be a graph with $|G| \geqslant 5 . G$ is outer-planar if and only if". Prove your conjecture.
(15) $\mathbf{(*)}^{*}$ Show there is a triangle free graph with chromatic number 2022.
(16) $\mathbf{(*}^{*}$) Let G be a triangulation (a plane graph where every face is a triangle) and let G° be the planar dual of G : the vertices of G° are the faces of G and edges in G° join faces that share a boundary edge (in G). Prove that $\chi(G) \leqslant 4$ if and only if $\chi^{\prime}\left(G^{\circ}\right) \leqslant 3$.

