GRAPH THEORY - EXAMPLE SHEET 2

Michaelmas 2022

Julian Sahasrabudhe

- (1) For a graph G, show that $\kappa(G) \leq \lambda(G) \leq \delta(G)$.
- (2) Let G be a graph. Show that $e(G) \ge \binom{\chi(G)}{2}$.
- (3) Let G be a k-connected graph and let y, x_1, \ldots, x_k be distinct vertices in G. Show that there exists paths P_1, \ldots, P_k , where P_i is a $y x_i$ path and P_1, \ldots, P_k have no vertices in common, apart from the vertex y.
- (4) An independent set in a graph G = (V, E) is a subset $I \subset V$ so that $x \not\sim y$ for all $x, y \in I$. Let G = (V, E) be a connected graph with $\Delta(G) \leq 3$ and $|V| \geq 10$. Show that there exists an independent set $I \subseteq V$ so that every odd cycle in G intersects I.
- (5) Determine the chromatic polynomial of the *n*-cycle C_n .
- (6) Let G be a graph on n vertices, show that the coefficients of the the chromatic polynomial P_G alternate in sign. That is, if $P_G = \sum_{i=0}^{n} c_i t^i$, Then $c_{n-j} \ge 0$ for even j and $c_{n-j} \le 0$ for odd j. Also show that if G has m edges and k triangles then $c_{n-2} = \binom{m}{2} k$.
- (7) Determine $\chi'(K_{n,n})$. Determine $\chi'(K_n)$.
- (8) Let G be a graph that has an orientation where the longest directed path has length t (that is, a sequence of oriented edges $(v_1, v_2), \ldots, (v_t, v_{t+1})$). Then $\chi(G) \leq t+1$.
- (9) Can $K_{4,4}$ be drawn on the torus? What about $K_{5,5}$?
- (10) Let G be a bipartite graph with maximum degree Δ . Must we have $\chi'(G) = \Delta(G)$?
- (11) Let G = (V, E) be a graph where V, E are countably infinite. Show that $\chi(G) \leq k$ if and only if $\chi(H) \leq k$ for every finite subgraph H of G.
- (12) For $k \ge 2$, let G = (V, E) be a k-connected graph and let $\{x_1, \ldots, x_k\} \subseteq V$. Show that there exists a cycle containing each of the vertices x_1, \ldots, x_k .
- (13) For each $r \ge 2$, construct a graph G that does not contain a K_{r+1} and $\chi(G) > r$.
- (14) A graph is *outer-planar* if it can be drawn in the plane so that all of its vertices are on the infinite face. Articulate a conjecture of the form "Let G be a graph with $|G| \ge 5$. G is outer-planar if and only if". Prove your conjecture.
- (15) (*) Show there is a triangle free graph with chromatic number 2022.
- (16) (*) Let G be a triangulation (a plane graph where every face is a triangle) and let G° be the planar dual of G: the vertices of G° are the faces of G and edges in G° join faces that share a boundary edge (in G). Prove that $\chi(G) \leq 4$ if and only if $\chi'(G^{\circ}) \leq 3$.