GRAPH THEORY - EXAMPLE SHEET 3

Michaelmas 2021

Julian Sahasrabudhe

- (1) Let G be a graph with n vertices. Show that if $e(G) > \binom{n}{2} (n-2)$ then G contains a Hamilton cycle.
- (2) Find the chromatic polynomial of the n cycle.
- (3) Is the Petersen graph planar?
- (4) Let G be a graph and let $P_G(t) = \sum_i c_i t^i$ be its chromatic polynomial. Show that the c_i alternate in sign (i.e. $c_i \leq 0$ if n-i is odd and $c_i \geq 0$ if n-i is even). Show also that if G has m edges and r triangles then $c_{n-2} = \binom{m}{2} r$.
- (5) Given *n* distinct points $x_1, \ldots, x_n \in \mathbb{R}^2$ and *n* distinct lines $\ell_1, \ldots, \ell_n \subseteq \mathbb{R}^2$, show that there are at most $10n^{3/2}$ point-line incidences, that is

$$|\{(i,j): x_i \in \ell_i\}| < 10n^{3/2}$$

- (6) Show every graph with $\delta(G) \ge 3$ contains a subdivision of K_4 .
- (7) An acylic orientation of a graph G is an assignment of an orintation to each edge (i.e. $uv \to (u, v)$ or $uv \to (v, u)$) so that there is no directed cycle. Let G be a graph and $P_G(t)$ be its chromatic polynomal. Show that $|P_G(-1)|$ is the number of acylic orientations of the edges of G.
- (8) Can $K_{4,4}$ be drawn on the torus? What about $K_{5,5}$?
- (9) A tournament is an oriented complete graph: every edge $\{u, v\}$ is given an unique direction, (u, v) or (v, u). Show that a tournament contains a *directed* path of length n 1: a sequence of vertices $x_1 x_2, \ldots, x_n$ so that $(x_i, x_{i+1}) \in E$ for all $1 \leq i \leq n 1$.
- (10) In a tournament T, a king is a vertex v which can reach any other vertex via a directed path of length at most 2. Show that every tournament has a king.
- (11) A bow-tie is the graph on 5 vertices consisting of two triangles which share a single vertex. Show that if |G| > 5 and $e(G) > \frac{n^2}{4} + 1$ then G contains a bow-tie.
- (12) An independent set in a graph is a collection of vertices where no two are adjacent. Show that if G = (V, E) is a graph then there is an independent set $I \subseteq V$ with

$$|I| \ge \sum_{x \in V} \frac{1}{d(x) + 1}.$$

[Hint: consider a random ordering of V]

- (13) (*) Let G be a 3-regular graph and let $e \in E$. Show that G has an even number of Hamilton cycles through e (quick reminder: 0 is an even number).
- (14) (*) Among a group of n dons, any two have exactly one mutual friend. Show that some don is friends with all the others