GRAPH THEORY - EXAMPLE SHEET 2

Michaelmas 2021

Julian Sahasrabudhe

- (1) For a graph G, show that $\kappa(G) \leq \lambda(G) \leq \delta(G)$.
- (2) Let G be a graph. Show that $e(G) \ge \binom{\chi(G)}{2}$.
- (3) Show that every maximal planar graph on $n \ge 3$ vertices has 3n 6 edges.
- (4) Let G be a k-connected graph and let y, x_1, \ldots, x_k be distinct vertices in G. Show that there exists paths P_1, \ldots, P_k , where P_i is a $y x_i$ path and P_1, \ldots, P_k have no vertices in common, apart from the vertex y.
- (5) An independent set in a graph G = (V, E) is a subset $I \subset V$ so that $x \not\sim y$ for all $x, y \in I$. Let G = (V, E) be a connected graph with $\Delta(G) \leq 3$ and $|V| \geq 10$. Show that there exists an independent set $I \subseteq V$ so that every odd cycle in G intersects I.
- (6) Define the *edge chromatic number* of G, denoted $\chi'(G)$, to be the chromatic number of the line graph of G. That is $\chi'(G) := \chi(L(G))$. Determine $\chi'(K_{n,n})$. Determine $\chi'(K_n)$.
- (7) Say that a set $X \subseteq \mathbb{R}^2$ is *discrete* if every point $x \in \mathbb{R}^2$ has a neighborhood U so that $|U \cap X| \leq 1$. A *planar drawing* of an infinite graph is a drawing of G where the vertices of G form a discrete set and edges are represented by non-crossing polygonal arcs. Show that there is an infinite graph on a countable vertex set that cannot be drawn in the plane but has no subdivision of $K_{3,3}$ or K_5 . (That is Kuratowski's theorem fails for infinite graphs).
- (8) Let G be a bipartite graph with maximum degree Δ . Must we have $\chi'(G) = \Delta(G)$?
- (9) Let G = (V, E) be a graph where V, E are countably infinite. Show that $\chi(G) \leq k$ if and only if $\chi(H) \leq k$ for every finite subgraph H of G.
- (10) Let G = (V, E) be a k-connected graph, $k \ge 2$ and let $\{x_1, \ldots, x_k\} \subseteq V$. Show that there exists a cycle containing each of the vertices x_1, \ldots, x_k .
- (11) For each $r \ge 2$ construct a graph G that does not contain a K_{r+1} and $\chi(G) > r$.
- (12) A graph is *outer-planar* if it can be drawn in the plane so that all of its vertices are on the infinite face. Articulate a conjecture of the form "Let G be a graph with $|G| \ge 5$. G is outer-planar if and only if". Prove your conjecture.
- (13) (*) Show there is a triangle free graph with chromatic number 2021.
- (14) (*) Let $C \subseteq \mathbb{R}^2$ be a polygon with all vertices in \mathbb{Z}^2 . Let b(C) be the number of integer points on the boundary of C and let i(C) be the number of integer points in the interior of C. Use Euler's formula to show that the area of C is i(C) + b(C)/2 1.