GRAPH THEORY - EXAMPLE SHEET 4

Michaelmas 2021

Julian Sahasrabudhe

- (1) By considering the graph on \mathbb{Z}_{17} in which x is joined to y if x y is a square modulo 17, show that R(4) = 18.
- (2) For $\ell, t \in \mathbb{N}$, define $R'_{\ell}(t)$ to be the smallest *n* so that every ℓ -colouring $c : E(K_n) \to \{1, \ldots, \ell\}$ contains a monochromatic K_t . Show that $R'_{\ell}(t)$ exists.
- (3) Let $\{I_i\}_{i\in\mathbb{N}}$ be a countable collection of closed, non-empty intervals in \mathbb{R} . Show that either there exists an infinite collection of pairwise disjoint intervals *or* there exists a $x \in \mathbb{R}$ that is covered by infinitely many intervals.
- (4) Show that $R'_{\ell}(3) \leq [e \cdot \ell!]$, where e = 2.718... is Euler's number.
- (5) Calculate the eigenvalues of K_n and $K_{m,n}$.
- (6) Let $G \sim G(n, p(n))$. Show that if $p(n)n^{2/3} \to 0$ then

$$\mathbb{P}(G \supset K_4) \to 0,$$

as $n \to \infty$ and if $p(n)n^{2/3} \to \infty$ then

$$\mathbb{P}(G \supset K_4) \to 1,$$

as $n \to \infty$. Here $p(n) = n^{2/3}$ is called the *threshold* for the event " $G \supset K_4$ ". What is the threshold for $G \supset K_r$?

- (7) Let A be an infinite set of points in the plane, with no three points of A collinear. Prove that A contains an infinite set B such that no point of B is a convex combination of other points of B.
- (8) Recall $\alpha(G)$ denotes the largest independent set in G. Show $\alpha(G(n, n^{-1/2})) \leq 4n^{1/2} \log n$, with probability tending to 1 as $n \to \infty$. Is it true that $\alpha(G(n, n^{-1/2})) \geq cn^{1/2} \log n$, with probability tending to 1, where c > 0 is some fixed constant?
- (9) Prove that the matrix J (all of whose entries are 1) is a polynomial in the adjacency matrix of a graph G if and only if G is regular and connected.
- (10) Let G be a graph in which every edge is in a unique triangle and every non-edge is a diagonal of a unique 4-cycle. Show that G is k-regular, for some k, and that the number of vertices of G is $k^2/2 + 1$. Show also that $k \in \{2, 4, 14, 22, 112, 994\}$.
- (11) Let $G(1/2, \mathbb{N})$ be the random graph defined on vertex set \mathbb{N} where every edge is included independently with probability 1/2. If two graphs G_1, G_2 are drawn independently from $G(1/2, \mathbb{N})$ show that G_1 is isomorphic to G_2 with probability 1.
- (12) (*) Can the edges of K_{10} be decomposed into 3 disjoint copies of the Petersen graph?
- (13) (*) Let A be an uncountable set and let $A^{(2)}$ be 2-coloured. Must there exist an uncountable monochromatic set in A?