GRAPH THEORY - EXAMPLE SHEET 1

January 2021

Julian Sahasrabudhe

- (1) Carefully write down a proof of the following facts seen in lecture. a) an even cycle is bipartite and an odd cycle is not bipartite. b) Let G be a graph containing a matching M. If there exists an M-augmenting path in G then G contains a matching M' with |M'| > |M|.
- (2) Show that every graph with at least two vertices has two vertices of the same degree.
- (3) Show that in every connected graph there exists a vertex so that G v is connected.
- (4) Show that if G is an acylic graph (a graph containing no cycle) then $e(G) \leq n-1$.
- (5) For $n \ge 2$ let $0 \le d_1 \le d_2 \le \cdots \le d_n$ be integers. Show that $(d_i)_{i=1}^n$ is a degree sequence of a tree if and only if $\sum_{i=1}^n d_i = 2n 2$.
- (6) Let G = (V, E) be a graph. Show that there exists a partition of the vertex set $V = A \cup B$ so that

$$e(G[A]) + e(G[B]) \leqslant e(G)/2. \tag{1}$$

For $X \subseteq V$, G[X] is defined as $G[X] = (X, \{ij \in E : i, j \in X\})$. Show that we can find a partition S, T satisfying (1) and, additionally,

$$e(G[A]), e(G[B]) \leq e(G)/3.$$

- (7) The average degree of a graph G = (V, E) is $n^{-1} \sum_{x \in V} d(x)$. Show that if the average degree of G is d then G contains a subgraph with minimum degree $\ge d/2$.
- (8) Say that a graph G = (V, E) can be *decomposed* into cycles if E can be partitioned $E = E_1 \cup \ldots \cup E_k$, where each E_i is the edge set of a cycle. Show that G can be decomposed into cycles if and only if all degrees of G are even.
- (9) The clique number of a graph G is the largest t so that G contains a complete graph on t vertices. Show that the possible clique numbers for a regular graph on n vertices are 1,2,..., |n/2| and n.
- (10) Let G = (V, E) be a graph. Show that there is a partition $V = A \cup B$ so all the vertices in the graphs G[A] and G[B] are of even degree.
- (11) An $n \times n$ Latin square (resp. $r \times n$ Latin rectangle) is an $n \times n$ (resp. $r \times n$) matrix, with each entry from $\{1, \ldots, n\}$, such that no two entries in the same row or column are the same. Prove that every $r \times n$ Latin rectangle may be extended to an $n \times n$ Latin square.
- (12) (*) Let $G = (X \cup Y, E)$ be a countably infinite bipartite graph with the property that $|N(A)| \ge |A|$ for all $A \subseteq X$. Give an example to show that G need not contain a matching saturating X. On the other hand, Show that if all of the degrees of G are finite then G does contain a matching saturating X. Does this remain true if G is uncountable?