Graph Theory (2019-20)

1. Prove that $R(3,3)=6$ and $R(3,4)=9$. By considering the graph with vertex set [17] in which x is joined to y if $x-y$ is a square (modulo 17), show that $R(4,4)=18$.
2. Prove that $R_{k}(3,3, \ldots 3) \leq\lfloor e k!\rfloor+1$. Show that if the numbers $1,2, \ldots,\lfloor e k!\rfloor$ are partitioned into k classes then the equation $x+y=z$ is soluble in some class. Infer that, for fixed n, the "Fermat" equation $\quad x^{n}+y^{n} \equiv z^{n} \quad(\bmod p) \quad$ has a non-trivial solution (that is, $x y z \not \equiv 0$) for all sufficiently large primes p. (Schur, 1916)
3. Let $A \subset \mathbb{R}^{2}$ be finite, with no three points collinear. Show that if $|A| \geq R^{(4)}(n, 5)$ then A contains n points forming a convex n-gon. Prove the same if $|A| \geq R^{(3)}(n, n)$.
4. Let $r(G)$ be the smallest n such that every red-blue colouring of the edges of K_{n} contains a monochromatic copy of the graph G. (Note that $r(G)$ exists because $r(G) \leq R(|G|)$.) Let I_{k} be a set of k independent edges, so $\left|I_{k}\right|=2 k$. Show that $r\left(I_{k}\right)=3 k-1$.
Let H_{k} consist of a triangle $x y z$ and k edges $x x_{1}, x x_{2}, \ldots, x x_{k}$, so $\left|H_{k}\right|=k+3$. Show that $r\left(H_{1}\right)=7$. What is $r\left(H_{k}\right)$?
5. Exhibit a 2-colouring of the edges of $K_{(s-1)^{2}}$ containing no monochromatic K_{s}.

Colour the edges of the complete graph with vertex set $[s-1]^{(3)}$ so that $A B$ is red if $|A \cap B|=1$ and $A B$ is blue otherwise. Show that there is no monochromatic K_{s}.
6. Let the infinite subsets of \mathbb{N} be 2 -coloured. Must there exist an infinite set $M \subset \mathbb{N}$ all of whose infinite subsets have the same colour?
7. By painting its vertices red or blue at random, show that a graph G has a bipartition $V(G)=V_{1} \cup V_{2}$ such that $e\left(G\left[V_{1}\right]\right)+e\left(G\left[V_{2}\right]\right) \leq \frac{1}{2} e(G) . \quad$ (c.f. Example Sheet 1)
8. Let $p \in(0,1)$ be fixed. Show that $G \in \mathcal{G}(n, p)$ has diameter 2 whp .
9. In a tournament on n players, each pair play a game, with one or other player winning (there are no draws). Prove that, for any k, there is a tournament in which, for any k players, there is a player who beats all of them. Exhibit such a tournament for $k=2$.
10. Show that for every $n \geq 1$ there is an $n \times n$ bipartite graph of size at least $\frac{1}{2} n^{2-\sigma}$ which contains no $K_{s, t}$, where $\sigma=(s+t-2) /(s t-1)$.
11. Show that $R(s, t)>n-\binom{n}{s} p^{\binom{s}{2}}-\binom{n}{t}(1-p)^{\binom{t}{2}}$ for every n and p. By taking $p=n^{-2 / 3}$, deduce that $R(4, t)>(t / 3 \log t)^{3 / 2}$ for large t.
12. Let X be the number of K_{4} 's in $G \in \mathcal{G}(n, p)$. Show that $\mathrm{E} X=\binom{n}{4} p^{6}$ and that $\operatorname{Var} X / \mathrm{E} X=\left(1-p^{6}\right)+4(n-4)\left(p^{3}-p^{6}\right)+6\binom{n-4}{2}\left(p^{5}-p^{6}\right)$. Hence show that if $p / n^{-2 / 3} \rightarrow 0$ then $X=0 \mathrm{whp}$, whereas if $p / n^{-2 / 3} \rightarrow \infty$ then $X \neq 0 \mathrm{whp}$.
13. Let X be the number of vertices of degree 1 in $G \in \mathcal{G}(n, p)$. Show that $\mathrm{E} X=n(n-$ 1) $p(1-p)^{n-2}$ and that, if $\omega(n) \rightarrow \infty$ and $p=(\log n+\log \log n+\omega(n)) / n$, then $X=0$ whp. Compute $\operatorname{Var} X$ and show that if $p=\log n / n$ then $X \neq 0$ almost surely.
${ }^{+}$14. Let A be an uncountable set, and let $A^{(2)}$ be 2 -coloured. Must there exist an uncountable monochromatic set in A ?

