Graph Theory (2019-20)

1. For which n and m is $K_{n, m}$ Hamiltonian? Is the Petersen graph (on sheet 1) Hamiltonian?
2. A tournament is a complete graph in which each edge $u v$ is given a direction, either from u to v or from v to u. Show that a tournament must contain a Hamiltonian path, i.e. a directed path through all the vertices. Must it contain a Hamiltonian circuit?
3. Construct a graph of order n with no Hamiltonian circuit and with size $\binom{n}{2}-(n-2)$. Show that no greater size can be achieved.
4. The points a_{1}, \ldots, a_{n} lie in the plane, with $\left\|a_{i}-a_{j}\right\| \leq 1,1 \leq i<j \leq n$. Prove that at most $n^{2} / 3$ of these distances exceed $1 / \sqrt{2}$.
5. Let G have $n \geq r+2 \geq 4$ vertices and $t_{r}(n)+1$ edges. Prove that, for every p in the range $r+1 \leq p \leq n, G$ has a subgraph of order p and size at least $t_{r}(p)+1$. Infer that G contains all but one edge of a K_{r+2}.
6. Show that every graph of order $n \geq 6$ and size $\left\lfloor n^{2} / 4\right\rfloor+1$ contains a C_{5}.
7. Prove that for $n \geq 5$ every graph of order n with $\left\lfloor n^{2} / 4\right\rfloor+2$ edges contains two triangles with exactly one vertex in common.
8. For each $r \geq 2$, construct a graph that does not contain K_{r+1} but that is not r-partite.
9. Find $\lim _{n \rightarrow \infty} \operatorname{ex}(n ; P) /\binom{n}{2}$, where P is the Petersen graph.
10. The upper density $\mathrm{ud}(\mathrm{G})$ of an infinite graph G is the supremum of the densities of its large finite subgraphs; that is,

$$
\operatorname{ud}(G)=\lim _{n \rightarrow \infty} \sup \left\{e(H) /\binom{|H|}{2}: H \subset G, n \leq|H|<\infty\right\}
$$

Show that, for every $G, \operatorname{ud}(G) \in\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, 1-\frac{1}{r}, \ldots, 1\right\}$.
11. Prove that if $|G|=n$ and $e(G)>\frac{n}{4}\{1+\sqrt{4 n-3}\}$ then G contains C_{4}. More generally, show that if $e(G)>\frac{n}{4}\{1+\sqrt{1+4(n-1)(t-1)}\}$ then G contains $K_{2, t}$.
12. Given a graph G with vertex set $[n]$, let $s(G)$ be the smallest size of a set S having subsets $S_{1}, \ldots, S_{n} \subset S$ with $S_{i} \cap S_{j} \neq \emptyset$ iff $i j \in E(G)$. Show that $s(G) \leq e(G)$, with equality iff G has no triangles. Prove that $s(G) \leq n^{2} / 4$ for all G.
13. Show that the maximum size of a graph of order n having only even circuits is $\left\lfloor n^{2} / 4\right\rfloor$. Show that the maximum size of a graph of order n having only odd circuits is $\lfloor 3(n-1) / 2\rfloor$.

+ 14. Show that an r-regular graph of order $2 r+1$ is Hamiltonian.

