Graph Theory (2019-20)

1. Show that every graph (of order at least two) has two vertices of the same degree.
2. Show that every connected graph G has a vertex v such that $G-v$ is connected.
3. The complement of the graph $G=(V, E)$ is $\bar{G}=\left(V, V^{(2)}-E\right)$. A graph isomorphic to its complement is self-complementary. Show that there is a self-complementary graph of order n if and only if $n \equiv 0$ or $1(\bmod 4)$.
4. Let $\left(d_{i}\right)_{1}^{n}$ be a sequence of integers. Show that there is a tree with degree sequence $\left(d_{i}\right)_{1}^{n}$ if and only if $d_{i} \geq 1$ for all i and $\sum_{i=1}^{n} d_{i}=2 n-2$.
5. Let T_{1}, \ldots, T_{k} be subtrees of a tree T, any two of which have at least one vertex in common. Prove that there is a vertex in all the T_{i}.
6. Let G be a graph. Show that its vertex set V has a partition $V=V_{1} \cup V_{2}$ such that

$$
e\left(G\left[V_{1}\right]\right)+e\left(G\left[V_{2}\right]\right) \leq \frac{1}{2} e(G)
$$

Show also that one may also demand that each V_{i} span at most a third of the edges; that is, $e\left(G\left[V_{i}\right]\right) \leq \frac{1}{3} e(G), \quad i=1,2$.
7. Draw the maps of the five Platonic solids. What are the dual maps?
8. Give two distinct arguments for why the Petersen graph (shown) is non-planar.
9. Show that every maximal planar graph of order $n \geq 3$ has $3 n-6$ edges.

10. Prove that every planar graph has a drawing in the plane in which every edge is a straight line segment.
11. Let G be a bipartite graph with bipartition X, Y having a matching from X into Y. Prove that there is a vertex $x \in X$ such that, for every edge $x y$, there is a matching from X to Y that contains $x y$.
12. An $n \times n$ Latin square (resp. $r \times n$ Latin rectangle) is an $n \times n$ (resp. $r \times n$) matrix, with each entry from $\{1, \ldots, n\}$, such that no two entries in the same row or column are the same. Prove that every $r \times n$ Latin rectangle may be extended to an $n \times n$ Latin square.
13. Must $\kappa(G-v) \leq \kappa(G)$ hold for all $v \in G$? Show that $\kappa(G) \leq \lambda(G) \leq \delta(G)$.
14. Prove that a graph G is k-connected iff $|G| \geq k+1$ and for any $U \subset V(G)$ with $|U| \geq k$ and for any vertex $x \notin U$, there is an $x-U$ fan, that is, k paths from x to U, any pair of paths having only the vertex x in common.
15. Prove that if G is k-connected $(k \geq 2)$ and $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset V(G)$ then there is a cycle in G of length at least $k+1$ that contains all $x_{i}, 1 \leq i \leq k$.
${ }^{+}$16. Each of n ageing dons has an item of gossip to impart. News is passed on by telephone: when two dons communicate, they share all the scandal they have gleaned thus far. How many calls are needed before each don knows all?

