
Mich. 2018 GRAPH THEORY—EXAMPLES 3 PAR

1(a) For which m and n is Km,n planar?

(b) For each n > 4, let Gn be the graph with vertex set [n], and ij an edge iff i − j ≡ ±1 or ±2 (mod n).

For which n is Gn planar?

2. Show, without assuming the four-colour theorem, that every triangle-free planar graph is four-colourable.

3. Let (Gn) be a sequence of graphs with |Gn| = n for each n. If there is some ε > 0 such that we have

e(Gn) ≥ ( 2
3 + ε)

(
n
2

)
for every n, why must every planar graph be a subgraph of some Gn? Show that this

need not be the case if instead e(Gn)/
(
n
2

)
→ 2/3.

4. Where is the error in the ‘proof’ of the Four-Colour Theorem given in lectures (summarized overleaf)?

5. Suppose G is a minimal non-4-colourable plane triangulation. Without assuming the Four Colour Theo-

rem:

(a) show that G does not contain the Birkhoff diamond;

(b) by counting faces, show that G must contain a vertex of degree 5 with two neighbours each of degree 5

or 6; and

(c) by applying the discharging rule that each vertex of degree 5 gives charge 1
3 to each of its neighbours of

degree at least 7, show that G must contain a vertex of degree 5 with either a neighbour of degree 5 or two

consecutive neighbours of degree 6.

6. What is χ′(Kn,n)? What is χ′(Kn)?

7. Show that every ∆-regular bipartite graph is ∆-edge-colourable. Is it true that for every bipartite graph

G we have χ′(G) = ∆(G)?

8. Let G be a graph and v ∈ G. Must κ(G− v) 6 κ(G)?

9. Show that, for any graph G, κ(G) 6 λ(G), and that if G is 3-regular then κ(G) = λ(G). Given positive

integers k 6 `, construct a graph G with κ(G) = k and λ(G) = `.

10. Let G be a bipartite graph with vertex classes X and Y . Show that if G has a matching from X to Y

then there exists x ∈ X such that every edge containing x extends to a matching from X to Y .

11. An n× n Latin square (resp. r× n Latin rectangle) is an n× n (resp. r× n) matrix, with entries in [n],

such that no two entries in the same row or column are the same. Prove that every r × n Latin rectangle

may be extended to an n× n Latin square.

12. Let G be a k-connected graph. Suppose that v ∈ G and U ⊂ V (G) − {v} with |U | ≥ k. Show that G

contains k vU -paths any two of which have only the vertex v in common.

13. Let G be a k-connected graph (k > 2), and let x1, x2, . . . , xk be vertices of G. Show that there is a

cycle in G containing all the xi.

14. Let G be an infinite bipartite graph with vertex classes X and Y such that |Γ(A)| ≥ |A| for every A ⊂ X.

Give an example to show that G need not contain a matching from X to Y . Show however that if G is

countable and every vertex in X has finite degree then G does contain a matching from X to Y . +Does this

remain true if G is uncountable?



PROOF OF THE FOUR-COLOUR THEOREM

Let G be a planar graph. We shall prove that G is 4-colourable.

We proceed by induction on |G|. If |G| 6 4 then the result is trivial, so suppose |G| = n > 4. Choose v ∈ G
of minimal degree and let H = G− v. By the induction hypothesis, we have a 4-colouring c of H. As in the

proof of the Five-Colour Theorem (5CT), d(v) 6 5. Draw G. If some colour is missing on Γ(v) we can use

that colour at v, so assume not. There are three cases to consider.

(i) d(v) = 4, and v has neighbours x1, x2, x3, x4 in clockwise order with c(xi) = i. There cannot

be both a 13-path from x1 to x3 and a 24-path from x2 to x4, so as in the proof of 5CT we can make some

colour swap and colour v.

(ii) d(v) = 5 and v has neighbours x1, x
′
1, x2, x3, x4 in clockwise order with c(xi) = i and c(x′1) = 1.

There must be a 24-path from x2 to x4 or we can make some colour swap and colour v. But then there can

be a 13-path from x3 to neither x1 nor x′1. So swap colours 1 and 3 on the 13-component of x3 and give v

colour 3.

(iii) d(v) = 5 and v has neighbours x1, x2, x
′
1, x3, x4 in clockwise order with c(xi) = i and c(x′1) = 1.

There must be a 23-path from x2 to x3 and a 24-path from x2 to x4 or we can make some colour swap and

colour v. But then there can be neither a 13-path from x1 to x3 nor a 14-path from x′1 to x4. So swap

colours 1 and 3 on the 13-component of x1; swap colours 1 and 4 on the 14-component of x′1; and give v

colour 1.


