

1. What is the chromatic number of the Petersen graph? What is its edge-chromatic number?
2. Let G be a graph with chromatic number k . Show that $e(G) \geq \binom{k}{2}$.
3. Show that, for any graph G , there is an ordering of the vertices of G for which the greedy algorithm uses only $\chi(G)$ colours.
4. For each $k \geq 3$, find a bipartite graph G , with an ordering v_1, v_2, \dots, v_n of its vertices, for which the greedy algorithm uses k colours. Give an example with $n = 2k - 2$. Is there an example with $n = 2k - 3$?
5. What is $\chi'(K_{n,n})$? What is $\chi'(K_n)$?
6. Let G be a bipartite graph of maximum degree Δ . Must we have $\chi'(G) = \Delta$?
7. Find the chromatic polynomial of the n -cycle.
8. Let G be a graph on n vertices, with $P_G(t) = t^n + a_{n-1}t^{n-1} + a_{n-2}t^{n-2} + \dots + a_1t + a_0$. Show that the a_i alternate in sign (in other words, $a_i \leq 0$ if $n - i$ is odd and $a_i \geq 0$ if $n - i$ is even). Show also that if G has m edges and c triangles then $a_{n-2} = \binom{m}{2} - c$.
9. An *acyclic orientation* of a graph G is an assignment of a direction to each edge of G in such a way that there is no directed cycle. Show that the number of acyclic orientations of G is precisely $|P_G(-1)|$.
10. Let G be a plane graph in which every face is a triangle. Show that the faces of G may be 3-coloured, unless $G = K_4$.
11. Can $K_{4,4}$ be drawn on the torus? What about $K_{5,5}$?
12. A *minor* of a graph G is any graph that may be obtained from a subgraph of G by successively contracting edges – equivalently, a graph H on vertex-set $\{v_1, \dots, v_r\}$ is a minor of G if we can find disjoint connected subgraphs S_1, \dots, S_r of G such that whenever $v_i v_j \in E(H)$ there is an edge from S_i to S_j . Show that for any k there is an n such that every graph G with $\chi(G) \geq n$ has a K_k minor. Writing $c(k)$ for the least such n , show that $c(k+1) \leq 2c(k)$. [Hint: choose $x \in G$, and look at the sets $\{y \in G : d(x, y) = t\}$.] Show that $c(k) = k$ for $1 \leq k \leq 4$, and explain why $c(5) = 5$ would imply the 4-Colour Theorem.
13. Let G be a countable graph in which every finite subgraph can be k -coloured. Show that G can be k -coloured.
- +14. Construct a triangle-free graph of chromatic number 1526.