

1. Prove that $R(3, 3) = 6$ and $R(3, 4) = 9$. By considering the graph with vertex set $[17]$ in which x is joined to y if $x - y$ is a square (modulo 17), show that $R(4, 4) = 18$.
2. Prove that $R_k(3, 3, \dots, 3) \leq \lfloor ek! \rfloor + 1$. Show that if the numbers $1, 2, \dots, \lfloor ek! \rfloor$ are partitioned into k classes then the equation $x + y = z$ is soluble in some class. Infer that, for fixed n , the “Fermat” equation $x^n + y^n \equiv z^n \pmod{p}$ has a non-trivial solution (that is, $xyz \not\equiv 0$) for all sufficiently large primes p . (Schur, 1916)
3. Let $A \subset \mathbb{R}^2$ be finite, with no three points collinear. Show that if $|A| \geq R^{(4)}(n, 5)$ then A contains n points forming a convex n -gon. Prove the same if $|A| \geq R^{(3)}(n, n)$.
4. Let $r(G)$ be the smallest n such that every red-blue colouring of the edges of K_n contains a monochromatic copy of the graph G . (Note that $r(G)$ exists because $r(G) \leq R(|G|)$.) Let I_k be a set of k independent edges, so $|I_k| = 2k$. Show that $r(I_k) = 3k - 1$. Let H_k consist of a triangle xyz and k edges xx_1, xx_2, \dots, xx_k , so $|H_k| = k + 3$. Show that $r(H_1) = 7$. What is $r(H_k)$?
5. Exhibit a 2-colouring of the edges of $K_{(s-1)^2}$ containing no monochromatic K_s . Colour the edges of the complete graph with vertex set $[s-1]^{(3)}$ so that AB is red if $|A \cap B| = 1$ and AB is blue otherwise. Show that there is no monochromatic K_s .
6. Let the infinite subsets of \mathbb{N} be 2-coloured. Must there exist an infinite set $M \subset \mathbb{N}$ all of whose infinite subsets have the same colour?
7. By painting its vertices red or blue at random, show that a graph G has a bipartition $V(G) = V_1 \cup V_2$ such that $e(G[V_1]) + e(G[V_2]) \leq \frac{1}{2}e(G)$. (c.f. Example Sheet 1)
8. Let $p \in (0, 1)$ be fixed. Show that $G \in \mathcal{G}(n, p)$ has diameter 2 whp.
9. In a *tournament* on n players, each pair play a game, with one or other player winning (there are no draws). Prove that, for any k , there is a tournament in which, for any k players, there is a player who beats all of them. Exhibit such a tournament for $k = 2$.
10. Show that for every $n \geq 1$ there is an $n \times n$ bipartite graph of size at least $\frac{1}{2}n^{2-\sigma}$ which contains no $K_{s,t}$, where $\sigma = (s+t-2)/(st-1)$.
11. Show that $R(s, t) > n - \binom{n}{s}p^{\binom{s}{2}} - \binom{n}{t}(1-p)^{\binom{t}{2}}$ for every n and p . By taking $p = n^{-2/3}$, deduce that $R(4, t) > (t/3 \log t)^{3/2}$ for large t .
12. Let X be the number of K_4 ’s in $G \in \mathcal{G}(n, p)$. Show that $EX = \binom{n}{4}p^6$ and that $\text{Var}X/EX = (1 - p^6) + 4(n-4)(p^3 - p^6) + 6\binom{n-4}{2}(p^5 - p^6)$. Hence show that if $p/n^{-2/3} \rightarrow 0$ then $X = 0$ whp, whereas if $p/n^{-2/3} \rightarrow \infty$ then $X \neq 0$ whp.
13. Let X be the number of vertices of degree 1 in $G \in \mathcal{G}(n, p)$. Show that $EX = n(n-1)p(1-p)^{n-2}$ and that, if $\omega(n) \rightarrow \infty$ and $p = (\log n + \log \log n + \omega(n))/n$, then $X = 0$ whp. Compute $\text{Var}X$ and show that if $p = \log n/n$ then $X \neq 0$ almost surely.
- + 14. Let A be an uncountable set, and let $A^{(2)}$ be 2-coloured. Must there exist an uncountable monochromatic set in A ?