Graph Theory (2013–14)

Example Sheet 3 of 4

- 1. Let $G = K_{s,t}$. Show that A has eigenvalues $\pm \sqrt{st}$ (once each) and 0 (s + t 2 times), and L has eigenvalues 0 and s + t (once each), s (t 1 times) and t (s 1 times).
- 2. Prove that the matrix J (all of whose entries are 1) is a polynomial in the adjacency matrix of a graph G if and only if G is regular and connected.
- **3.** Discuss the possibilities for d-regular, triangle free graphs of order 100 wherein every non-adjacent pair of vertices has b common neighbours. Find the eigenvalues when d=22.
- **4.** Show that $e(G) \ge {\chi(G) \choose 2}$ holds for every graph G.
- **5.** Prove that a triangulated plane map is 3-colourable unless it is K_4 .
- **6.** Let $p_G(x) = \sum_{i=0}^{|G|} (-1)^i a_i x^{|G|-i}$ be the chromatic polynomial of G. Find $p_G(x)$ when $G = K_{3,m}$ and when G is the wheel W_k (a cycle C_k plus a vertex joined to all of it). Prove that $a_i \geq 0$, $a_0 = 1$, $a_1 = e(G)$ and $a_2 = \binom{e(G)}{2} t(G)$, where t(G) is the number of triangles in G.
- 7. Find graphs G and H with |G| = |H|, e(G) = e(H) and $\chi(G) > \chi(H)$, such that there are more ways to colour G than H when the number of available colours is large.
- **8.** What is $\chi'(K_{m,n})$? What is $\chi'(K_n)$?
- **9.** Let G be a graph of order n with complement \overline{G} . Show that $2\sqrt{n} \le \chi(G) + \chi(\overline{G}) \le n+1$.
- 10. Let $n=2^p$. Show that K_{n+1} is not the union of p bipartite graphs but that K_n is. Deduce that among any 2^p+1 points in the plane there are three that determine an angle of size at least $\pi(1-(1/p))$.
- 11. Show that an Eulerian plane map is 2-colourable.
- 12. Verify Tutte's counterexample (on the right) to Tait's conjecture (maybe the dashes help).

- 13. Show that $\max\{\chi(G): G \text{ embeds on the projective plane}\}=6$.
- **14.** Prove that, if G is countable and $\chi(H) \leq k$ for every finite $H \subset G$, then $\chi(G) \leq k$.
- ⁺ **15.** You are at a party where no-one has more friends than you do. You discover that every two people there have exactly one mutual friend present. Prove that everybody is your friend.
- + **16.** Construct a triangle-free graph of chromatic number 1526.