

1. For which n and m is $K_{n,m}$ Hamiltonian? Is the Petersen graph (on sheet 1) Hamiltonian?
2. A *tournament* is a complete graph in which each edge uv is given a direction, either from u to v or from v to u . Show that a tournament must contain a Hamiltonian path, i.e. a directed path through all the vertices. Must it contain a Hamiltonian cycle?
3. Construct a graph of order n with no Hamiltonian cycle and with size $\binom{n}{2} - (n - 2)$. Show that no greater size can be achieved.
4. The points a_1, \dots, a_n lie in the plane, with $\|a_i - a_j\| \leq 1$, $1 \leq i < j \leq n$. Prove that at most $n^2/3$ of these distances exceed $1/\sqrt{2}$.
5. Let G have $n \geq r + 2 \geq 4$ vertices and $t_r(n) + 1$ edges. Prove that, for every p in the range $r + 1 \leq p \leq n$, G has a subgraph of order p and size at least $t_r(p) + 1$. Infer that G contains all but one edge of a K_{r+2} .
6. Show that every graph of order $n \geq 6$ and size $\lfloor n^2/4 \rfloor + 1$ contains a C_5 .
7. Prove that for $n \geq 5$ every graph of order n with $\lfloor n^2/4 \rfloor + 2$ edges contains two triangles with exactly one vertex in common.
8. Show that a graph of order $2n$ and size $n^2 + 1$ contains at least n triangles.
9. For each $r \geq 2$, construct a graph that does not contain K_{r+1} but that is not r -partite.
10. Show that $\lim_{n \rightarrow \infty} \text{ex}(n; P)/\binom{n}{2} = \frac{1}{2}$, where P is the Petersen graph.
11. The *upper density* $\text{ud}(G)$ of an infinite graph G is the supremum of the densities of its large finite subgraphs; that is,

$$\text{ud}(G) = \lim_{n \rightarrow \infty} \sup \{ e(H)/\binom{|H|}{2} : H \subset G, n \leq |H| < \infty \}.$$

Show that, for every G , $\text{ud}(G) \in \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, 1 - \frac{1}{r}, \dots, 1\}$.

12. Prove that if $|G| = n$ and $e(G) > \frac{n}{4}\{1 + \sqrt{4n - 3}\}$ then G contains a C_4 .
13. Given a graph G with vertex set $[n]$, let $s(G)$ be the smallest size of a set S having subsets $S_1, \dots, S_n \subset S$ with $S_i \cap S_j \neq \emptyset$ iff $ij \in E(G)$. Show that $s(G) \leq e(G)$, with equality iff G has no triangles. Prove that $s(G) \leq n^2/4$ for all G .
14. Show that the maximum size of a graph of order n having only even cycles is $\lfloor n^2/4 \rfloor$.
Show that the maximum size of a graph of order n having only odd cycles is $\lfloor 3(n-1)/2 \rfloor$.
- ⁺ 15. Show that an r -regular graph of order $2r + 1$ is Hamiltonian.