Graph Theory (2012–13)

- **1.** For which n and m is $K_{n,m}$ Hamiltonian? Is the Petersen graph (on sheet 1) Hamiltonian?
- 2. A *tournament* is a complete graph in which each edge uv is given a direction, either from u to v or from v to u. Show that a tournament must contain a Hamiltonian path, i.e. a directed path through all the vertices. Must it contain a Hamiltonian circuit?
- **3.** Construct a graph of order n with no Hamiltonian circuit and with size $\binom{n}{2} (n-2)$. Show that no greater size can be achieved.
- 4. The points a_1, \ldots, a_n lie in the plane, with $||a_i a_j|| \le 1$, $1 \le i < j \le n$. Prove that at most $n^2/3$ of these distances exceed $1/\sqrt{2}$.
- 5. Let G have $n \ge r+2 \ge 4$ vertices and $t_r(n) + 1$ edges. Prove that, for every p in the range $r+1 \le p \le n$, G has a subgraph of order p and size at least $t_r(p) + 1$. Infer that G contains all but one edge of a K_{r+2} .
- 6. Show that every graph of order $n \ge 6$ and size $\lfloor n^2/4 \rfloor + 1$ contains a C_5 .
- 7. Prove that for $n \ge 5$ every graph of order n with $\lfloor n^2/4 \rfloor + 2$ edges contains two triangles with exactly one vertex in common.
- 8. Show that a graph of order 2n and size $n^2 + 1$ contains at least n triangles.
- **9.** For each $r \ge 2$, construct a graph that does not contain K_{r+1} but that is not r-partite.
- 10. Show that $\lim_{n\to\infty} \exp(n; P) / \binom{n}{2} = \frac{1}{2}$, where P is the Petersen graph.
- 11. The *upper density* ud(G) of an infinite graph G is the supremum of the densities of its large finite subgraphs; that is,

$$\mathrm{ud}(G) = \lim_{n \to \infty} \sup \left\{ e(H) / \binom{|H|}{2} : H \subset G, \, n \le |H| < \infty \right\}.$$

Show that, for every G, $ud(G) \in \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, 1 - \frac{1}{r}, \dots, 1\}$.

- 12. Prove that if |G| = n and $e(G) > \frac{n}{4} \{1 + \sqrt{4n-3}\}$ then G contains a C_4 .
- 13. Given a graph G with vertex set [n], let s(G) be the smallest size of a set S having subsets $S_1, \ldots, S_n \subset S$ with $S_i \cap S_j \neq \emptyset$ iff $ij \in E(G)$. Show that $s(G) \leq e(G)$, with equality iff G has no triangles. Prove that $s(G) \leq n^2/4$ for all G.
- 14. Show that the maximum size of a graph of order n having only even cycles is $\lfloor n^2/4 \rfloor$. Show that the maximum size of a graph of order n having only odd cycles is $\lfloor 3(n-1)/2 \rfloor$.
- +15. Show that an r-regular graph of order 2r + 1 is Hamiltonian.