

1. Show that every graph (of order at least two) has two vertices of the same degree.
2. Show that every connected graph G has a vertex v such that $G - v$ is connected.
3. A graph $G = (V, E)$ isomorphic to its *complement* $\overline{G} = (V, V^{(2)} - E)$ is *self-complementary*. Show that there is a self-complementary graph of order n if and only if $n \equiv 0$ or 1 (mod 4).
4. Let $(d_i)_1^n$ be a sequence of integers. Show that there is a tree with degree sequence $(d_i)_1^n$ if and only if $d_i \geq 1$ for all i and $\sum_{i=1}^n d_i = 2n - 2$.
5. Let T_1, \dots, T_k be subtrees of a tree T , any two of which have at least one vertex in common. Prove that there is a vertex in all the T_i .
6. Let G be a graph. Show that its vertex set V has a partition $V = V_1 \cup V_2$ such that

$$e(G[V_1]) + e(G[V_2]) \leq \frac{1}{2}e(G).$$

Show also that one may also demand that each V_i span at most a third of the edges; that is, $e(G[V_i]) \leq \frac{1}{3}e(G)$, $i = 1, 2$.

7. Give two distinct arguments for why the *Petersen* graph (shown) is non-planar.
8. Show that every maximal planar graph of order $n \geq 3$ has $3n - 6$ edges.
9. Prove that every planar graph has a drawing in the plane in which every edge is a straight line segment.
10. Show that a regular bipartite graph has a 1-factor (i.e., 1-regular spanning subgraph).
11. Let G be a bipartite graph with bipartition X, Y having a matching from X into Y . Prove that there is a vertex $x \in X$ such that, for every edge xy , there is a matching from X to Y that contains xy .
12. Must $\kappa(G - v) \leq \kappa(G)$ for all $v \in G$? Show that $\kappa(G) \leq \lambda(G) \leq \delta(G)$.
13. Prove that a graph G is k -connected iff $|G| \geq k + 1$ and for any $U \subset V(G)$ with $|U| \geq k$ and for any vertex $x \notin U$, there are k paths from x to U , any pair of paths having only the vertex x in common.
14. Prove that if G is k -connected ($k \geq 2$) and $\{x_1, x_2, \dots, x_k\} \subset V(G)$ then there is a cycle in G of length at least $k + 1$ that contains all x_i , $1 \leq i \leq k$.
- ⁺15. Each of n ageing dons has an item of gossip to impart. News is passed on by telephone: when two dons communicate, they share all the scandal they have gleaned thus far. How many calls are needed before each don knows all?

