Mich. 2011 GRAPH THEORY—EXAMPLES 1 PAR

1. Show that every graph (of order at least 2) has two vertices of the same degree.

2. Construct a 3-regular graph with 8 vertices. Is there a 3-regular graph with 9 vertices?

3. A graph G is *self-complementary* if it is isomorphic to its complement. Show that there exists a self-complementary graph of order n if and only if $n \equiv 0$ or 1 (mod 4).

4. Show that every graph of average degree d contains a subgraph of minimum degree at least d/2.

5. Let G be a graph. Show that its vertex set V has a partition $V = V_1 \cup V_2$ such that $e(G[V_1]) + e(G[V_2]) \leq \frac{1}{2}e(G)$. Show that one may demand in addition that each V_i span at most a third of the edges; that is, $e(G[V_i]) \leq \frac{1}{2}e(G)$ for i = 1, 2.

6. Show that $R(s,t) \leq {\binom{s+t-2}{s-1}}$ for all $s, t \geq 2$. Hence deduce that $R(s) = O\left(\frac{4^s}{\sqrt{s}}\right)$.

7. Show that R(3,4) = 9 and R(4) = 18. [Hint: consider the graph with vertex-set [17], where ij is an edge iff i - j is a square modulo 17.]

8. Show that $R_k(s) \leq 4^{s^{k-1}}$. By giving a two-pass proof of the multicolour Ramsey theorem, or otherwise, show that in fact $R_k(s) \leq k^{ks}$.

9. Given a graph G, let R(G) be the smallest n such that every blue-yellow colouring of K_n yields a monochromatic copy of G.

(a) How do we know that R(G) exists?

(b) Let I_k be a set of k independent edges (so $|I_k| = 2k$). Show that $R(I_k) = 3k - 1$.

(c) Let H_k consist of a triangle xyz and k edges xx_1, xx_2, \ldots, xx_k (so $|H_k| = k+3$). Show that $R(H_1) = 7$. What is $R(H_k)$?

10. Let $f_1, f_2, \ldots, f_n: \mathbb{R} \to \mathbb{R}$ be bounded functions and let $\delta, \varepsilon > 0$. Suppose $f: \mathbb{R} \to \mathbb{R}$ is such that, whenever we have $x, y \in \mathbb{R}$ with $|f(x) - f(y)| > \delta$, then $|f_i(x) - f_i(y)| > \varepsilon$ for some *i*. Show that *f* is bounded.

11. Show that there is an infinite set S of positive integers such that the sum of any two distinct elements of S has an even number of distinct prime factors.

12. (a) For each integer $s \ge 3$, exhibit a 2-colouring of the edges of the graph $K_{(s-1)^2}$ containing no monochromatic K_s (thus showing that $R(s) = \Omega(s^2)$).

(b) Let \mathcal{A} be a collection of subsets of [s-1]. Suppose that (i) $|\mathcal{A}| = 3$ for each $\mathcal{A} \in \mathcal{A}$; and (ii) $|\mathcal{A} \cap \mathcal{B}| = 1$ for all distinct $\mathcal{A}, \mathcal{B} \in \mathcal{A}$. Show that $|\mathcal{A}| \leq s-1$. Show also that the same holds if we replace the condition $|\mathcal{A} \cap \mathcal{B}| = 1$ in (ii) with $|\mathcal{A} \cap \mathcal{B}| \neq 1$. Hence exhibit a 2-colouring of the edges of $K_{\binom{s-1}{3}}$ containing no monochromatic K_s (thus showing that $\mathcal{R}(s) = \Omega(s^3)$).

13. Suppose that each point of the plane \mathbb{R}^2 with integer coordinates is coloured either blue or yellow. Show that there must be a rectangle, with sides parallel to the coordinate axes, all four of whose vertices are the same colour. ⁺Show further that this statement is still true if 'rectangle' is replaced by 'square'.