

1. Let $G = (V, E)$ be a digraph such that $\Gamma^+(v) \neq \emptyset$ for all $v \in G$. Show that G contains a (directed) cycle, i.e. distinct vertices v_1, v_2, \dots, v_k with $v_i v_{i+1} \in E$ for $i = 1, 2, \dots, k-1$ and $v_k v_1 \in E$.
2. Why does the Ford-Fulkerson algorithm still terminate if we allow the capacities of edges to be rational, rather than just integral? What if we also allow the capacities to be irrational?
3. Let G be a graph and $v \in G$. Must $\kappa(G - v) \leq \kappa(G)$?
4. For each $n \geq 3$, show that there is a tournament of order n containing $2^{-n}(n-1)!$ (directed) Hamilton cycles.
5. Let $p \in (0, 1)$ be fixed. Show that almost every $G \in \mathcal{G}(n, p)$ has diameter 2.
6. Show that, for any graph G , $\kappa(G) \leq \lambda(G)$. Given positive integers $k \leq \ell$, construct a graph G with $\kappa(G) = k$ and $\lambda(G) = \ell$.
7. Show that if G is 3-regular then $\kappa(G) = \lambda(G)$.
8. For a set $B \subset V(G)$ and a vertex a not in B , an a - B fan is a family of $|B|$ paths from a to B , any two meeting only at a . Show that a graph G (with $|G| > k$) is k -connected if and only if there is an a - B fan for every $B \subset V(G)$ with $|B| = k$ and every vertex a not in B .
9. Let G be a k -connected graph ($k \geq 2$), and let x_1, x_2, \dots, x_k be vertices of G . Show that there is a cycle in G containing all the x_i .
10. Prove that, for any k , there is a tournament in which, for any k players, there is a player who beats all of them. Exhibit such a tournament for $k = 2$.
11. Show that a tournament must contain a (directed) Hamilton path, i.e. a directed path through all the vertices. Must it contain a (directed) Hamilton cycle?
12. Let X denote the number of copies of K_4 in a random graph G chosen from $\mathcal{G}(n, p)$. Find the mean and the variance of X . Deduce that $p = n^{-2/3}$ is a threshold for the existence of a K_4 , in the sense that if $pn^{2/3} \rightarrow 0$ then almost surely G does not contain a K_4 , while if $pn^{2/3} \rightarrow \infty$ then almost surely G does contain a K_4 .
13. Find the eigenvalues of the graph K_n , and of the graph $K_{m,n}$.
14. Let G be a graph in which every edge is in a unique triangle and every non-edge is a diagonal of a unique 4-cycle. Show that $|G| \in \{3, 9, 99, 243, 6273, 494019\}$.
- +15. At a certain conference, it transpires that each pair of participants have precisely one co-author in common, and that their common co-author is also attending the conference. Show that there is someone at the conference ('Erdős') who is a co-author of every other participant.