1. Show that for any graph G we have $e(G) \ge \binom{\chi(G)}{2}$.

2. Show that for any graph G there is some ordering of the vertices for which the greedy algorithm uses only $\chi(G)$ colours.

3. For each $n \ge 1$, let G_n be the graph with vertex set [n], and ij an edge iff $i - j \equiv \pm 1$ or $\pm 2 \pmod{n}$. For which n is G_n planar?

4. Show, without assuming the four-colour theorem, that every triangle-free planar graph is four-colourable.

5. Let (G_n) be a sequence of graphs with $|G_n| = n$ for each n. If there is some $\varepsilon > 0$ such that we have $e(G_n) \ge (\frac{2}{3} + \varepsilon) {n \choose 2}$ for every n, why must every planar graph be a subgraph of some G_n ? Show that this need not be the case if instead $e(G_n)/{n \choose 2} \to 2/3$.

6. What is $\chi'(K_{n,n})$? What is $\chi'(K_n)$? What are $\chi(P)$ and $\chi'(P)$, where P is the Petersen graph?

7. For each $k \ge 3$, find a bipartite graph G and an ordering of its vertices for which the greedy algorithm uses k colours. Give an example with |G| = 2k - 2. Is there an example with |G| = 2k - 3?

8. Find the chromatic polynomial of the n-cycle.

9. Let G be a graph with chromatic polynomial $p(X) = X^n + a_{n-1}X^{n-1} + a_{n-2}X^{n-2} + \dots + a_0$. Show that the coefficients a_i alternate in sign. Show also that if G has m edges and t triangles then $a_{n-2} = \binom{m}{2} - t$.

10. Show that every Δ -regular bipartite graph is Δ -edge-colourable. Is it true that for every bipartite graph G we have $\chi'(G) = \Delta(G)$?

11. Let G be a bipartite graph with vertex classes X and Y. Show that if G has a matching from X to Y then there exists $x \in X$ such that every edge containing x extends to a matching from X to Y.

12. Let G be an infinite bipartite graph, with vertex classes X and Y such that $|\Gamma(A)| \ge |A|$ for every $A \subset X$. Give an example to show that G need not contain a matching from X to Y. Show however that if G is countable and every vertex has finite degree then G does contain a matching from X to Y. ⁺Does this remain true if G is uncountable?

13. Let G be a finite group, and H a subgroup of G of index k. Show that there must exist some elements $g_1, g_2, \ldots, g_k \in G$ such that g_1H, g_2H, \ldots, g_kH are the left cosets of H and Hg_1, Hg_2, \ldots, Hg_k are the right cosets of H.

14. A chain in $\mathcal{P}[n] = \{A : A \subset [n]\}$ is a sequence $A_0 \subset A_1 \subset \cdots \subset A_k$ of subsets of [n]. Show that $\mathcal{P}[n]$ can be partitioned into $\binom{n}{\lfloor n/2 \rfloor}$ disjoint chains, but cannot be partitioned into $\binom{n}{\lfloor n/2 \rfloor} - 1$ disjoint chains.

15. Let G be a planar graph (so we know that G has a drawing in the plane in which each edge is polygonal). Show that there is a drawing of G in the plane in which each edge is represented by a straight line.