

1. Show that $R(3, 4) \leq 9$. By considering the graph on \mathbb{Z}_8 (the integers modulo 8) in which x is joined to y if $x - y = \pm 1$ or ± 2 , show that $R(3, 4) = 9$.
2. By considering the graph on \mathbb{Z}_{17} in which x is joined to y if $x - y$ is a square modulo 17, show that $R(4, 4) = 18$.
3. Show that $R_3(3, 3, 3) \leq 17$.
4. Let A be a set of $R^{(4)}(n, 5)$ points in the plane, with no three points of A collinear. Prove that A contains n points forming a convex n -gon.
5. Let A be an infinite set of points in the plane, with no three points of A collinear. Prove that A contains an infinite set B such that no point of B is a convex combination of other points of B .
6. Show that every graph G has a partition of its vertex-set as $X \cup Y$ such that the number of edges from X to Y is at least $\frac{1}{2}e(G)$. Give three proofs: by induction, by choosing an optimal partition, and by choosing a random partition.
7. In a *tournament* on n players, each pair play a game, with one or other player winning (there are no draws). Prove that, for any k , there is a tournament in which, for any k players, there is a player who beats all of them. [Hint: consider a random tournament.] Exhibit such a tournament for $k = 2$.
8. Let X denote the number of copies of K_4 in a random graph G chosen from $G(n, p)$. Find the mean and the variance of X . Deduce that $p = n^{-2/3}$ is a threshold for the existence of a K_4 , in the sense that if $pn^{2/3} \rightarrow 0$ then almost surely G does not contain a K_4 , while if $pn^{2/3} \rightarrow \infty$ then almost surely G does contain a K_4 .
9. Find the eigenvalues of K_n . Find the eigenvalues of $K_{n,m}$.
10. Prove that the matrix J (all of whose entries are 1) is a polynomial in the adjacency matrix of a graph G if and only if G is regular and connected.
11. Let G be a graph in which every edge is in a unique triangle and every non-edge is a diagonal of a unique 4-cycle. Show that G is k -regular, for some k , and that the number of vertices of G is $1 + k^2/2$. Show also that k must belong to the set $\{2, 4, 14, 22, 112, 994\}$.
12. Let the infinite subsets of \mathbb{N} be 2-coloured. Must there exist an infinite set $M \subset \mathbb{N}$ all of whose infinite subsets have the same colour?
- +13. Let A be an uncountable set, and let $A^{(2)}$ be 2-coloured. Must there exist an uncountable monochromatic set in A ?