1. What is the chromatic number of the Petersen graph? What is its edge-chromatic number?

2. What is $\chi'(K_{n,n})$? What is $\chi'(K_n)$?

3. Let G be a graph with chromatic number k. Show that $e(G) \ge \binom{k}{2}$.

4. Show that, for any graph G, there is an ordering of the vertices of G for which the greedy algorithm uses only $\chi(G)$ colours.

5. For each $k \ge 3$, find a bipartite graph G, with an ordering v_1, v_2, \ldots, v_n of its vertices, for which the greedy algorithm uses k colours. Give an example with n = 2k - 2. Is there an example with n = 2k - 3?

6. Let G be a bipartite graph of maximum degree Δ . Must we have $\chi'(G) = \Delta$?

7. Find the chromatic polynomial of the n-cycle.

8. Let G be a graph on n vertices, with $p_G(t) = t^n + a_{n-1}t^{n-1} + a_{n-2}t^{n-2} + \ldots + a_1t + a_0$. Show that the a_i alternate in sign (in other words, $a_i \leq 0$ if n-i is odd and $a_i \geq 0$ if n-i is even). Show also that if G has m edges and c triangles then $a_{n-2} = \binom{m}{2} - c$.

9. An *acyclic orientation* of a graph G is an assignment of a direction to each edge of G in such a way that there is no directed cycle. Show that the number of acyclic orientations of G is precisely $|p_G(-1)|$.

10. Let G be a plane graph in which every face is a triangle. Show that the faces of G may be 3-coloured, unless $G = K_4$.

11. Can $K_{4,4}$ be drawn on the torus? What about $K_{5,5}$?

12. A minor of a graph G is any graph that may be obtained from a subgraph of G by successively contracting edges – equivalently, a graph H on vertex-set $\{v_1, \ldots, v_r\}$ is a minor of G if we can find disjoint connected subgraphs S_1, \ldots, S_r of G such that whenever $v_i v_j \in E(H)$ there is an edge from S_i to S_j . Show that for any k there is an n such that every graph G with $\chi(G) \geq n$ has a K_k minor. Writing c(k) for the least such n, show that $c(k+1) \leq 2c(k)$. [Hint: choose $x \in G$, and look at the sets $\{y \in G : d(x, y) = t\}$.] Show that c(k) = k for $1 \leq k \leq 4$, and explain why c(5) = 5 would imply the 4-Colour Theorem.

13. Let G be a countable graph in which every finite subgraph can be k-coloured. Show that G can be k-coloured.

+14. Construct a triangle-free graph of chromatic number 1526.