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Basic Examples: straightforward material on some of the main definitions and theorems.

B1) Prove that R(3, 3) = 6 and R(3, 4) = 9. By considering the graph with vertex set [17]
in which x is joined to y if x− y is a square (modulo 17), show that R(4, 4) = 18.

B2) By painting its vertices red or blue at random, show that a graph G has a bipartition
V (G) = V1 ∪ V2 such that e(G[V1]) + e(G[V2]) ≤ 1

2e(G). (c.f. example sheet 1).

B3) Let X be the number of K4’s in G(n, p). Show that EX =
(
n
4

)
p6 and calculate E(X2)

or VarX. Hence show that if p/n−2/3 → 0 then X = 0 whp, whereas if p/n−2/3 →∞
then X 6= 0 whp.

B4) Show that the adjacency matrix A(Kn) of Kn has eigenvalues n − 1 (once) and −1
(n− 1 times). Show that A(Ks,t) has eigenvalues ±

√
st (once each) and 0 (s+ t− 2

times), and that the Laplacian of Ks,t has eigenvalues 0 and s+ t (once each), s (t−1
times) and t (s− 1 times).

Exercises: you needn’t do all the basic examples before attempting these.

1) Show that R3(3, 3, 3) ≤ 17. Give an example to show that R3(3, 3, 3) = 17.
[There is a symmetric example, with vertex set [16] and the colour of ij depending
only on i− j (modulo 16).]

2) Let A be a set of R(4)(n, 5) points in the plane, with no three points of A collinear.
Prove that A contains n points forming a convex n-gon.

Give a different argument to prove the same with R(3)(n, n) in place of R(4)(n, 5).

3) Prove that there is a tournament (oriented complete graph — see example sheet 1) of
order n containing at least 2−n(n− 1)! directed Hamiltonian cycles.

4) Given a graph G drawn on the plane (maybe with some edges crossing) let ξ(G) be the
number of edge crossings. Let |G| = n and e(G) = m. Show that ξ(G) ≥ m− 3n+ 6.
Improve this when m ≥ 4n as follows. Choose a random subset S ⊂ V (G) by choosing
vertices independently with probability p = 4n/m. Let XS = ξ(G[S])−e(G[S])+3|S|,
so XS ≥ 0. Show that EXS = p4ξ(G)− p2m+ 3pn. Thus ξ(G) ≥ m3/64n2.

5) Use Stirling’s formula to show that
(
n
s

)
21−(

s

2) < 1 if n = 1−ε
e
√

2
s2s/2 and s is large.

Conclude that R(s) > ( 1
e
√

2
+ o(1))s2s/2.

By removing a vertex from each monochromatic Ks in a random colouring, show that

R(s) > n−
(
n
s

)
21−(

s

2) for every n. Conclude that R(s) > (1/e+ o(1))s2s/2.

6) Show that for every n ≥ 1 there is an n × n bipartite graph of size at least 1
2n

2−σ

which contains no Ks,t, where σ = (s+ t− 2)/(st− 1).
7) Let X be the number of vertices of degree 1 in G(n, p). Show that EX = n(n−1)p(1−

p)n−2. Deduce that, if ω(n) → ∞ and p = (log n + log log n + ω(n))/n, then X = 0
whp. By considering E(X2), show that if p = log n/n then X 6= 0 whp.
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8) Let G be a graph in which every edge is in a unique K3 and every non-edge is the
diagonal of a unique C4. Show that |G| = 1 + 2t2 and so G is strongly regular with
parameters (2t, 1, 2), for some t ∈ {1, 2, 7, 11, 56, 497}.

9) The Laplacian of a d-regular graph of order n is L = dI−A, and µ1 = 0, µ2, . . . , µn are
its eigenvalues. By considering trA2 show that maxi≥2 |d−µi| ≥

√
d(n− d)/(n− 1)).

+10) You are at a party where you know at least as many people as anyone else does. You
discover that every two people there have exactly one mutual acquaintance at the
party. Prove that you know everybody else.

Further Problems: the selection above covers the course but you might enjoy the ones below too.

F1) Given a finite graph G, let R(G) be the smallest n such that every red-blue colouring
of Kn yields a monochromatic copy of G.
(i) Let Ik be a set of k independent edges, so |Ik| = 2k. Show that R(Ik) = 3k − 1.
(ii) Show that R(C4) = 6.

11) Show that Rk(3, 3, . . . 3) ≤ bek!c+ 1.
Deduce the following theorem of Schur: if we partition the numbers 1, 2, . . . , bek!c into
k classes then the equation x+ y = z is soluble in at least one of the classes.
Conclude that, for any fixed n, the “Fermat” equation xn + yn ≡ zn (mod p)
has a non-trivial solution (that is, xyz 6≡ 0) for all sufficiently large primes p.

F2) Let the infinite subsets of N be 2-coloured. Must there exist an infinite set M ⊂ N all
of whose infinite subsets have the same colour?

+F3) Let A be an uncountable set, and let A(2) be 2-coloured. Must there exist an uncount-
able monochromatic set in A?

F4) Prove that every sequence of mn + 1 numbers contains an increasing subsequence of
length m+ 1 or a decreasing sequence of length n+ 1.

F5) Show that R(s, t) > n−
(
n
s

)
p(

s

2)−
(
n
t

)
(1−p)(

t

2) for every n and p. By taking p = n−2/3,

deduce that R(4, t) > (t/3 log t)3/2 for large t.

F6) Let λn+a1λ
n−1+a2λ

n−2+ . . .+an be the characteristic polynomial of the adjacency
matrix of G. Show that a1 = 0, a2 = −e(G) and a3 = −2 × the number of K3’s in G.

F7) Let B be an incidence matrix for G. Show that G has |G| − rank(B) components.
F8) LetG be a graph of order n and sizem, and B the incidence matrix of some orientation.

Let B̃ be the (n− 1)×m matrix obtained by deleting some row of B. For each set S

of n− 1 edges of G let PS be the corresponding (n− 1)× (n− 1) submatrix of B̃.
(i) Show that detPS = ±1 if S forms a spanning tree and detPS = 0 otherwise.
(ii) The Cauchy-Binet formula states that detB̃B̃t =

∑
S detPSP

t
S , where S runs

over all subsets of n− 1 edges. Deduce that G has n−2det(L+J) spanning trees.
(iii) By taking G = Kn, show there are n

n−2 labelled trees of order n.
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