MATHEMATICAL TRIPOS PART II (2006–07)

Graph Theory - Example Sheet 2 of 4

O.M. Riordan

Basic Examples: straightforward material on some of the main definitions and theorems.

- B1) Construct a graph of order n with no Hamilton cycle and with size $\binom{n}{2} (n-2)$. Show that no greater size can be achieved.
- B2) Why does every graph G of order n and size $\lfloor n^2/4 \rfloor + 1$ contain a K_3 ? Show that if $n \ge 6$ it contains a C_5 too. [Hint: How large can $\delta(G)$ be?]
- B3) Let G be a graph of order n and size m with $G \not\supset K_{t,t}$. Show that there is an n by n bipartite graph with 2m edges not containing $K_{t,t}$, and deduce that $ex(n, K_{t,t}) \leq \frac{1}{2}((t-1)^{1/t}(n-t+1)n^{1-1/t}+(t-1)n)$.
- B4) Show that $\lim_{n\to\infty} \exp(n; P) / \binom{n}{2} = \frac{1}{2}$, where P is the Petersen graph drawn (correctly) below.

Exercises: you needn't do all the basic examples before attempting these.

- 1) Let G be a graph of order n.
 - (i) Let x and y be non-adjacent vertices with $d(x) + d(y) \ge n$. Show that G is Hamiltonian if and only if G + xy is.
 - (ii) Form the closure C(G) of G by repeatedly joining pairs of vertices whose degree sum is at least n, until no such pairs remain. Show that C(G) is well-defined (that is, the order in which pairs are joined is immaterial).
 - (iii) Deduce that, if $d(x) + d(y) \ge n$ whenever $xy \notin E(G)$, then G is Hamiltonian.
- 2) Show directly, without appealing to Turán's theorem, that if G is a graph of order n with $\delta(G) > \delta(T_r(n)) = n \lceil n/r \rceil$ then G contains K_{r+1} .
- 3) Let v_1, \ldots, v_{3n} be vectors in \mathbb{R}^2 with $||v_i v_j|| \le 1$ for all i, j. Prove that at most $3n^2$ of the distances $||v_i v_j||$ can, in fact, exceed $1/\sqrt{2}$. [Hint: Can all the distances amongst four of the points exceed $1/\sqrt{2}$?]
- 4) Let G have $n \ge r+1$ vertices and $t_{r-1}(n) + 1$ edges.
 - (i) Prove that for every p in the range $r \le p \le n$, G has a subgraph of order p and size at least $t_{r-1}(p) + 1$.
 - (ii) Deduce that if $r \ge 3$ then G contains all but one edge of a K_{r+1} .
- 5) Prove that for $n \ge 5$ every graph of order n with $\lfloor n^2/4 \rfloor + 2$ edges contains two triangles with exactly one vertex in common.

- 6) For each p in the range $2 \le p \le n/2$, construct a connected regular graph of order n containing K_p but not K_{p+1} . On the other hand, show that if p > n/2 and G is a regular graph of order n containing K_p , then $G = K_n$.
- 7) Let G be a graph of order n and let G_1, \ldots, G_n be the subgraphs of order n-1 obtainable by removing a single vertex. Show that $\sum_{i=1}^n e(G_i) = (n-2)e(G)$. Let F be a graph and let $c_n = \exp(n; F) / \binom{n}{2}$. Deduce that $c_n \leq c_{n-1}$ and hence that $\lim_{n \to \infty} c_n$ exists.
- 8) The upper density ud(G) of an infinite graph G is the supremum of the densities of its large finite subgraphs; that is,

$$\mathrm{ud}(G) = \lim_{n \to \infty} \sup\left\{ e(H) / {\binom{|H|}{2}} : H \subset G, \, n \le |H| < \infty \right\}.$$

Show that, for every G, $ud(G) \in \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, 1 - \frac{1}{r}, \dots, 1\}.$

Further Problems: the selection above covers the course but you might enjoy the ones below too.

- F1) Let $A = (a_{ij})_1^n$ be an $n \times n$ doubly stochastic matrix, that is, its entries are nonnegative and the rows and columns each sum to one. Show that A is in the convex hull of the set of $n \times n$ permutation matrices, i.e. there are permutation matrices P_1, P_2, \ldots, P_m such that $A = \sum_{i=1}^{m} \lambda_i P_i$ and $\sum_{i=1}^{m} \lambda_i = 1$. How small can one choose m?
- F2) The independence number $\beta(G)$ of a graph is the size of a largest independent vertex subset (spanning no edges). Show that if $\beta(G) \leq \kappa(G)$ then G is Hamiltonian. [Hint: If not, let C be a largest cycle in G and let $x \in V(G) - V(C)$. Find $\kappa(G)$ paths from x to C, and consider the vertices on C preceding the endvertices of these paths.]
- +F3) Show that an r-regular graph of order 2r + 1 is Hamiltonian.
 - F4) Let G be a graph of order n and average degree d = 2e(G)/n. Let S be the sum $\sum_{uv \in E(G)} d(u) + d(v)$. Show that $nd^2 \leq S = \sum_{u \in G} d(u)^2$. Hence deduce that, if $d(u) + d(v) \leq 2D$ whenever $uv \in E(G)$, then $d \leq D$. In particular, show that if G satisfies the Ore degree condition, namely $d(u) + d(v) \geq n$ whenever $uv \notin E(G)$, then $e(G) \geq n^2/4$.
 - F5) Let G be a graph of order n satisfying the *anti*-Ore condition; that is, $d(u) + d(v) \ge n$ whenever $uv \in E(G)$. What is the minimum value of e(G) if $\delta(G) \ge 1$? Can you find the minimum if $\delta(G) = d \le n/2$?
 - F6) Let q be a prime power and \mathbb{F}_q a field with q elements. The projective plane over \mathbb{F}_q has as points all lines in \mathbb{F}_q^3 containing the origin, and as lines all planes containing the origin. (A point is on a line if the corresponding line lies in the corresponding plane.) Verify that the projective plane gives rise to an n by n bipartite graph with $\frac{n}{2}(1 + \sqrt{4n-3})$ edges containing no $K_{2,2}$, where $n = q^2 + q + 1$. Show that it also gives rise to a graph with n vertices and $\frac{n}{4}(1 + \sqrt{4n-3})$ edges containing no C_4 .

omr10@dpmms.cam.ac.uk