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Graph Theory – Example Sheet 1 of 4 O.M. Riordan

Basic Examples: straightforward material on some of the main definitions and theorems.

B0) Show that every graph (of order at least two) has two vertices of the same degree.

B1) Show that every connected graph G (of order at least two) has two vertices u, v such
that both G− u and G− v are connected.

B2) Show that every graph can be drawn in R3 without crossing edges.

B3) Show that every maximal planar graph of order n ≥ 3 has 3n− 6 edges.

B4) A graph is k-regular if every vertex has degree k. Show that a k-regular bipartite
graph has a 1-factor (i.e., a 1-regular spanning subgraph).

B5) Prove that a graph G is k-connected iff |G| ≥ k + 1 and for any U ⊂ V (G) with
|U | ≥ k and for any vertex x /∈ U , there are k paths from x to U , any pair of paths
having only the vertex x in common.

Exercises: you needn’t do all the basic examples before attempting these.

1) Let (di)
n
1 be a sequence of integers, n ≥ 2. Show that there is a tree with degree

sequence (di)
n
1 if and only if di ≥ 1 for all i and

∑n

i=1di = 2n− 2.

2) A graph isomorphic to its complement is self-complementary. Show that there is a
self-complementary graph of order n if and only if n ≡ 0 or 1 (mod 4).

3) Let G be a graph. Show that its vertex set V has a partition V = V1 ∪ V2 such that

e(G[V1]) + e(G[V2]) ≤
1

2
e(G).

Show that one may demand in addition that each Vi span at most a third of the edges;
that is, e(G[Vi]) ≤

1
3
e(G), i = 1, 2.

4) Prove that every planar graph has a drawing in the plane in which every edge is a
straight line segment. [Hint: Apply induction on the order of maximal planar graphs
by omitting a suitable vertex.]

5) Let G be a connected, bridgeless plane graph drawn with straight edges. Reprove
Euler’s formula by evaluating the sum of all angles in all faces of G in two different
ways. What can you say if G is drawn on the torus instead of the plane?

6) Let G be an infinite bipartite graph with bipartition X∪Y . Show that Hall’s condition
does not guarantee a matching from X into Y , but that it does do so if G is countable
and every vertex in X has finite degree. What if G is uncountable?

7) Show that κ(G) ≤ λ(G) ≤ δ(G).
Conversely, show that if 1 ≤ k ≤ ` ≤ d are integers, then there is a graph with
κ(G) = k, λ(G) = ` and δ(G) = d.
Construct a graph H with a vertex v such that κ(H) = k and κ(H − v) = `.
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In the special case that G is cubic (all degrees are 3) prove that κ(G) = λ(G).

8) Prove that if G is k-connected (k ≥ 2) and {x1, x2, . . . , xk} ⊂ V (G) then there is a
cycle in G of length at least k + 1 that contains all xi, 1 ≤ i ≤ k.

Further Problems: the selection above covers the course but you might enjoy the ones below too.

F1) Show that there are nn−3 trees with n unlabelled vertices and n− 1 labelled edges.

F2) A tournament is a complete oriented graph, that is, a complete graph in which each
edge uv is given a direction, either from u to v or from v to u. Prove that every
tournament contains a directed path containing every vertex.

F3) Let G be a graph of order n, with degree sequence d1 ≤ d2 ≤ . . . ≤ dn = ∆, such that
dk ≥ k for k ≤ n−∆− 1. Prove that G is connected.

F4) Show that every forest of order n contains either at least n/9 leaves or at least n/9
vertex disjoint paths of length 4.

F5) Show that a graph of order n and size m contains at least m− n+ 1 cycles, and that
this bound may be attained iff n− 1 ≤ m ≤ b3(n− 1)/2c.

F6) Show that if G is a regular (all degrees equal) bipartite graph then κ(G) 6= 1.

F7) Let uv be an edge of the graph G. The graph G/uv is obtained by contracting the
edge uv; that is, the edge uv is removed, u and v are identified and any resulting
duplicate edges are deleted. H is a minor of G, written H ≺ G, if it is a subgraph of
a graph obtained from G by a sequence of edge-contractions.
(i) Observe that G Â H if and only if V (G) contains disjoint subsets Wv, v ∈ V (H),

such that G[Wv] is connected and, whenever uv ∈ E(H), there is an edge of G
between Wu and Wv.

(ii) Deduce that, if ∆(H) ≤ 3, then G Â H if and only if G contains a subdivision
of H.

(iii) Prove that G is planar if and only if G 6Â K3,3 and G 6Â K5.

F8) Refer to the previous exercise for the definition of G Â H and the fact that G Â K4

if and only if G contains a subdivision of K4.
(i) Show that if κ(G) ≥ 3 then G Â K4.
(ii) Show that if G 6Â K4 then G has at least two vertices of degree at most 2.
(iii) Deduce that if e(G) ≥ 2|G| − 2 then G contains a subdivision of K4.

F9) Show that the Petersen graph (shown) is non-planar by
(a) showing it has too many edges
(b) finding a subdivision of K3,3

(c) finding a K5 minor.
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