

MATHEMATICAL TRIPOS PART II (2006–07)

Graph Theory – Example Sheet 1 of 4

O.M. Riordan

Basic Examples: straightforward material on some of the main definitions and theorems.

- B0) Show that every graph (of order at least two) has two vertices of the same degree.
- B1) Show that every connected graph G (of order at least two) has two vertices u, v such that both $G - u$ and $G - v$ are connected.
- B2) Show that every graph can be drawn in \mathbb{R}^3 without crossing edges.
- B3) Show that every maximal planar graph of order $n \geq 3$ has $3n - 6$ edges.
- B4) A graph is *k-regular* if every vertex has degree k . Show that a k -regular bipartite graph has a 1-factor (i.e., a 1-regular spanning subgraph).
- B5) Prove that a graph G is k -connected iff $|G| \geq k + 1$ and for any $U \subset V(G)$ with $|U| \geq k$ and for any vertex $x \notin U$, there are k paths from x to U , any pair of paths having only the vertex x in common.

Exercises: you needn't do all the basic examples before attempting these.

- 1) Let $(d_i)_1^n$ be a sequence of integers, $n \geq 2$. Show that there is a tree with degree sequence $(d_i)_1^n$ if and only if $d_i \geq 1$ for all i and $\sum_{i=1}^n d_i = 2n - 2$.
- 2) A graph isomorphic to its complement is *self-complementary*. Show that there is a self-complementary graph of order n if and only if $n \equiv 0$ or 1 (mod 4).
- 3) Let G be a graph. Show that its vertex set V has a partition $V = V_1 \cup V_2$ such that

$$e(G[V_1]) + e(G[V_2]) \leq \frac{1}{2}e(G).$$

Show that one may demand in addition that each V_i span at most a third of the edges; that is, $e(G[V_i]) \leq \frac{1}{3}e(G)$, $i = 1, 2$.

- 4) Prove that every planar graph has a drawing in the plane in which every edge is a straight line segment. [Hint: Apply induction on the order of maximal planar graphs by omitting a suitable vertex.]
- 5) Let G be a connected, bridgeless plane graph drawn with straight edges. Reprove Euler's formula by evaluating the sum of all angles in all faces of G in two different ways. What can you say if G is drawn on the torus instead of the plane?
- 6) Let G be an infinite bipartite graph with bipartition $X \cup Y$. Show that Hall's condition does not guarantee a matching from X into Y , but that it does do so if G is countable and every vertex in X has finite degree. What if G is uncountable?
- 7) Show that $\kappa(G) \leq \lambda(G) \leq \delta(G)$.
Conversely, show that if $1 \leq k \leq \ell \leq d$ are integers, then there is a graph with $\kappa(G) = k$, $\lambda(G) = \ell$ and $\delta(G) = d$.
Construct a graph H with a vertex v such that $\kappa(H) = k$ and $\kappa(H - v) = \ell$.

In the special case that G is *cubic* (all degrees are 3) prove that $\kappa(G) = \lambda(G)$.

8) Prove that if G is k -connected ($k \geq 2$) and $\{x_1, x_2, \dots, x_k\} \subset V(G)$ then there is a cycle in G of length at least $k + 1$ that contains all x_i , $1 \leq i \leq k$.

Further Problems: the selection above covers the course but you might enjoy the ones below too.

F1) Show that there are n^{n-3} trees with n unlabelled vertices and $n - 1$ labelled edges.

F2) A *tournament* is a complete *oriented* graph, that is, a complete graph in which each edge uv is given a direction, either from u to v or from v to u . Prove that every tournament contains a directed path containing every vertex.

F3) Let G be a graph of order n , with degree sequence $d_1 \leq d_2 \leq \dots \leq d_n = \Delta$, such that $d_k \geq k$ for $k \leq n - \Delta - 1$. Prove that G is connected.

F4) Show that every forest of order n contains either at least $n/9$ leaves or at least $n/9$ vertex disjoint paths of length 4.

F5) Show that a graph of order n and size m contains at least $m - n + 1$ cycles, and that this bound may be attained iff $n - 1 \leq m \leq \lfloor 3(n - 1)/2 \rfloor$.

F6) Show that if G is a regular (all degrees equal) bipartite graph then $\kappa(G) \neq 1$.

F7) Let uv be an edge of the graph G . The graph G/uv is obtained by *contracting* the edge uv ; that is, the edge uv is removed, u and v are identified and any resulting duplicate edges are deleted. H is a *minor* of G , written $H \prec G$, if it is a subgraph of a graph obtained from G by a sequence of edge-contractions.

- (i) Observe that $G \succ H$ if and only if $V(G)$ contains disjoint subsets W_v , $v \in V(H)$, such that $G[W_v]$ is connected and, whenever $uv \in E(H)$, there is an edge of G between W_u and W_v .
- (ii) Deduce that, if $\Delta(H) \leq 3$, then $G \succ H$ if and only if G contains a subdivision of H .
- (iii) Prove that G is planar if and only if $G \not\succ K_{3,3}$ and $G \not\succ K_5$.

F8) Refer to the previous exercise for the definition of $G \succ H$ and the fact that $G \succ K_4$ if and only if G contains a subdivision of K_4 .

- (i) Show that if $\kappa(G) \geq 3$ then $G \succ K_4$.
- (ii) Show that if $G \not\succ K_4$ then G has at least two vertices of degree at most 2.
- (iii) Deduce that if $e(G) \geq 2|G| - 2$ then G contains a subdivision of K_4 .

F9) Show that the *Petersen* graph (shown) is non-planar by

- (a) showing it has too many edges
- (b) finding a subdivision of $K_{3,3}$
- (c) finding a K_5 minor.

