MATHEMATICAL TRIPOS PART II (2005–06)

Graph Theory - Example Sheet 1 of 4

A.G. Thomason

Basic Examples: straightforward material on some of the main definitions and theorems.

- B0) Show that every graph (of order at least two) has two vertices of the same degree.
- B1) Show that every connected graph G (of order at least two) has two vertices u, v such that both G u and G v are connected.
- B2) Show that every graph can be drawn in \mathbb{R}^3 without crossing edges.
- B3) Show that every maximal planar graph of order $n \ge 3$ has 3n 6 edges.
- B4) A graph is k-regular if every vertex has degree k. Show that a k-regular bipartite graph has a 1-factor (i.e., 1-regular spanning subgraph).
- B5) Prove that a graph G is k-connected iff $|G| \ge k + 1$ and for any $U \subset V(G)$ with $|U| \ge k$ and for any vertex $x \notin U$, there are k paths from x to U, any pair of paths having only the vertex x in common.

Exercises: you needn't do all the basic examples before attempting these.

- 1) Let $(d_i)_1^n$ be a sequence of integers. Show that there is a tree with degree sequence $(d_i)_1^n$ if and only if $d_i \ge 1$ for all i and $\sum_{i=1}^n d_i = 2n 2$.
- 2) The complement of the graph G = (V, E) is the graph $\overline{G} = (V, V^{(2)} E)$. A graph isomorphic to its complement is self-complementary. Show that there is a self-complementary graph of order n if and only if $n \equiv 0$ or $1 \pmod{4}$.
- 3) Let G be a graph. Show that its vertex set V has a partition $V = V_1 \cup V_2$ such that

$$e(G[V_1]) + e(G[V_2]) \le \frac{1}{2}e(G).$$

Show also that one may also demand that each V_i span at most a third of the edges; that is, $e(G[V_i]) \leq \frac{1}{3}e(G)$, i = 1, 2.

- 4) Prove that every planar graph has a drawing in the plane in which every edge is a straight line segment. [Hint. Apply induction on the order of maximal planar graphs by omitting a suitable vertex.]
- 5) Let G be a bipartite graph with bipartition $X \cup Y$ having a matching from X into Y. (i) Prove that there is a vertex $x \in X$ such that for every edge xy there is a matching
 - from X to Y that contains xy. (ii) Deduce that if |X| = m and d(x) = d for every $x \in X$ then G contains at least d! matchings if $d \le m$ and at least $d(d-1) \dots (d-m+1)$ matchings if d > m.
- 6) Show that Hall's condition will not guarantee a matching in an infinite bipartite graph, but that it will do so if G is countable and every vertex in X has finite degree.
- 7) Show that $\kappa(G) \leq \lambda(G) \leq \delta(G)$. Conversely, show that if $1 \leq k \leq l \leq d$ are integers, then there is a graph with $\kappa(G) = k, \lambda(G) = l$ and $\delta(G) = d$. Construct a graph H with a vertex v such that $\kappa(H) = k$ and $\kappa(H - v) = l$. In the special case that G is *cubic* (all degrees are 3) prove that $\kappa(G) = \lambda(G)$.

8) Prove that if G is k-connected $(k \ge 2)$ and $\{x_1, x_2, \ldots, x_k\} \subset V(G)$ then there is a cycle in G of length at least k + 1 that contains all $x_i, 1 \le i \le k$.

Further Problems: the selection above covers the course but you might enjoy the ones below too.

- F1) A tournament is a complete oriented graph, that is, a complete graph in which each edge uv is given a direction, either from u to v or from v to u. Prove that every tournament contains a (directed) path containing every vertex.
- F2) Let G be a graph of order n, with degree sequence $d_1 \leq d_2 \leq \ldots \leq d_n = \Delta$, such that $d_k \geq k$ for $k \leq n \Delta 1$. Prove that G is connected.
- F3) Show that every forest of order n contains either at least n/9 leaves or at least n/9 vertex disjoint paths of length 4.
- F4) Why is the maximum number of edges in a graph having order n and having no odd cycles precisely $\lfloor n^2/4 \rfloor$? Show that, in a graph containing no even cycles, every vertex of degree greater than two is a cutvertex (i.e., its removal disconnects the graph). Deduce that the maximum size of a graph of order n having only odd cycles is $\lfloor 3(n-1)/2 \rfloor$.
- F5) Show that if G is a regular (all degrees equal) bipartite graph then $\kappa(G) \neq 1$.
- F6) Let H be a subgroup of the group G having finite index k. Show that there are elements $g_1, \ldots, g_k \in G$ such that g_1H, \ldots, g_kH are the distinct left cosets and Hg_1, \ldots, Hg_k are the distinct right cosets. (P. Hall)
- F7) Let uv be an edge of the graph G. The graph G/uv is obtained by *contracting* the edge uv; that is, the edge uv is removed, u and v are identified and any resulting duplicate edges are deleted. H is a *minor* of G, written $H \prec G$, if it is a subgraph of a graph obtained from G by a sequence of edge-contractions.
 - (i) Observe that $G \succ H$ if and only if V(G) contains disjoint subsets W_v , $v \in V(H)$, such that $G[W_v]$ is connected and, whenever $uv \in E(H)$, there is an edge of G between W_u and W_v .
 - (ii) Deduce that, if $\Delta(H) \leq 3$, then $G \succ H$ if and only if G contains a subdivision of H.
 - (iii) Prove that G is planar if and only if $G \not\succ K_{3,3}$ and $G \not\succ K_5$.
- F8) Refer to the previous exercise for the definition of $G \succ H$ and the fact that $G \succ K_4$ if and only if G contains a subdivision of K_4 .
 - (i) Show that if $\kappa(G) \geq 3$ then $G \succ K_4$.
 - (ii) Show that if $G \not\succeq K_4$ then G has at least two vertices of degree at most 2.
 - (iii) Deduce that if $e(G) \ge 2|G| 2$ then G contains a subdivision of K_4 .
- F9) Show that the *Petersen* graph (as shown) is non-planar by
 - (a) showing it has too many edges
 - (b) finding a subdivision of $K_{3,3}$
 - (c) finding a K_5 minor.

