

MATHEMATICAL TRIPOS PART II (2004–05)

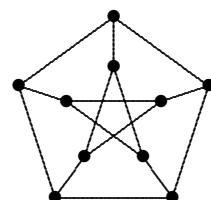
Graph Theory - Problem Sheet 2 of 4

A.G. Thomason

Note: The exercises are largely independent of each other — so, if you can't do one, go on to another.

- 15) Let G be a graph of order n .
 - (i) Let x and y be non-adjacent vertices with $d(x) + d(y) \geq n$. Show that G is Hamiltonian (has a Hamiltonian cycle) if and only if $G + xy$ is.
 - (ii) Form the *closure* $C(G)$ of G by repeatedly joining pairs of vertices whose degree sum is at least n , until no such pairs remain. Show that $C(G)$ is well-defined (that is, the order in which pairs are joined is immaterial).
 - (iii) Deduce that, if $d(x) + d(y) \geq n$ whenever $xy \notin E(G)$, then G is Hamiltonian.
- 16) Construct a graph of order n with no Hamiltonian cycle and with size $\binom{n}{2} - (n - 2)$. Show that no greater size can be achieved.
- 17) Show directly, without appealing to Turán's theorem, that if G is a graph of order n and $\delta(G) > \delta(T_r(n)) = n - \lceil n/r \rceil$ then G contains K_{r+1} .
- 18) Let v_1, \dots, v_n be vectors of length at least one in some Euclidean space. Prove that there are at most $\lfloor n^2/4 \rfloor$ pairs $i < j$ with $\|v_i + v_j\| < 1$.
 [Hint. Show there's a pair with $\|v_i + v_j\| \geq 1$ and $1 \leq i < j \leq 3$.]
- 19) Let v_1, \dots, v_{3n} be vectors in \mathbb{R}^2 with $\|v_i - v_j\| \leq 1$ for all i, j . Prove that at most $3n^2$ of the distances $\|v_i - v_j\|$ can, in fact, exceed $1/\sqrt{2}$.
 [Hint. Can all the distances amongst four of the points exceed $1/\sqrt{2}$?]
- 20) Let G have $n \geq r + 1$ vertices and $t_{r-1}(n) + 1$ edges.
 - (i) Prove that for every p in the range $r \leq p \leq n$, G has a subgraph of order p and size at least $t_{r-1}(p) + 1$.
 - (ii) Deduce that if $r \geq 3$ then G contains all but one edge of a K_{r+1} .
- 21) Prove that for $n \geq 5$ every graph of order n with $\lfloor n^2/4 \rfloor + 2$ edges contains two triangles with exactly one vertex in common.
- 22) For each p in the range $2 \leq p \leq n/2$, construct a connected regular graph of order n containing K_p but not K_{p+1} . On the other hand, show that if $p > n/2$ and G is a regular graph of order n containing K_p , then $G = K_n$.
- 23) Prove that if $|G| = n$ and $e(G) > \frac{n}{4}\{1 + \sqrt{4n - 3}\}$ then G contains a cycle of length 4.
- 24) Let G be a graph of order n and let G_1, \dots, G_n be the subgraphs of order $n - 1$ obtainable by removing a single vertex. Show that $\sum_{i=1}^n e(G_i) = (n - 2)e(G)$.
 Let F be a graph and let $c_n = \text{ex}(n; F)/\binom{n}{2}$. Deduce that $c_n \leq c_{n-1}$ and hence that $\lim_{n \rightarrow \infty} c_n$ exists.
- 25) Show that $\lim_{n \rightarrow \infty} \text{ex}(n; P)/\binom{n}{2} = \frac{1}{2}$, where P is the cubic graph of order 10 called the *Petersen graph*, shown here.

The Petersen Graph



26) The *upper density* $ud(G)$ of an infinite graph G is the supremum of the densities of its large finite subgraphs; that is,

$$ud(G) = \lim_{n \rightarrow \infty} \sup \{ e(H)/\binom{|H|}{2} : H \subset G, n \leq |H| < \infty \}.$$

Show that, for every G , $ud(G) \in \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, 1 - \frac{1}{r}, \dots, 1\}$.

Further Problems

Note: the examples above are minimal to cover the course; you are encouraged to do those below also.

F8) Let $A = (a_{ij})_1^n$ be an $n \times n$ doubly stochastic matrix, that is, its entries are non-negative and the rows and columns each sum to one. Show that A is in the convex hull of the set of $n \times n$ permutation matrices, i.e. there are permutation matrices P_1, P_2, \dots, P_m such that $A = \sum_1^m \lambda_i P_i$ and $\sum_1^m \lambda_i = 1$. [Let $a_{ij}^* = \lceil a_{ij} \rceil$, $A^* = (a_{ij}^*)_1^n$, and let $G = G_2(n, n)$ be the bipartite graph naturally associated with A^* . Show that G has a 1-factor and deduce that one can find a permutation matrix P and a real λ , $0 < \lambda \leq 1$, such that $A - \lambda P = B = (b_{ij})_1^n$ satisfies $b_{ij} \geq 0$ and B has at least one more 0 entry than A .] How small can one choose m ?

F9) Reduce Menger's Theorem to Hall's Theorem in the following way. Let G be a minimal counterexample to the assertion that there are always $\kappa(a, b)$ vertex disjoint paths between two non-adjacent vertices a and b . Show, as in lectures, that if $\kappa(a, b) = k$ and S is a k -cut then $S \subset \Gamma(a)$ or $S \subset \Gamma(b)$.

Therefore (by minimality) no vertex lies outside $\Gamma(a) \cup \Gamma(b)$, else it could be removed. Likewise (by minimality) $\Gamma(a) \cap \Gamma(b) = \emptyset$, for any vertex in this set can be removed. But then $G - \{a, b\}$ has bipartition $\Gamma(a), \Gamma(b)$ and we can apply Hall's Theorem.

F10) The *independence number* $\beta(G)$ of a graph is the size of a largest independent vertex subset (spanning no edges). Show that if $\beta(G) \leq \kappa(G)$ then G is Hamiltonian. [Hint. If not, let C be a largest cycle in G and let $x \in V(G) - V(C)$. Find $\kappa(G)$ paths from x to C , and consider the vertices on C preceding the endvertices of these paths.]

⁺F11) Show that an r -regular graph of order $2r + 1$ is Hamiltonian.

F12) Let G be a graph of order n and average degree $d = 2e(G)/n$. Let S be the sum $\sum_{uv \in E(G)} d(u) + d(v)$. Show that $nd^2 \leq S = \sum_{u \in G} d(u)^2$. Hence deduce that, if $d(u) + d(v) \leq 2D$ whenever $uv \in E(G)$, then $d \leq D$. In particular, show that if G satisfies the Ore degree condition, namely $d(u) + d(v) \geq n$ whenever $uv \notin E(G)$, then $e(G) \geq n^2/4$.

F13) Let G be a graph of order n satisfying the *anti*-Ore condition; that is, $d(u) + d(v) \geq n$ whenever $uv \in E(G)$. What is the minimum value of $e(G)$ if $\delta(G) \geq 1$? Can you find the minimum if $\delta(G) = d \leq n/2$?

F14) By inspecting the given proof of the Erdős-Stone Theorem, prove that there is a function $n_2(r, \epsilon)$ such that every graph G of order $n > n_2$ with $\delta(G) \geq (1 - 1/r + \epsilon)n$ contains a $K_{r+1}(t)$ where $t = \lceil 2^{-r+1}(1/(r-1)!) \epsilon \log n \rceil$, and every graph G of order n with $e(G) \geq (1 - 1/r + \epsilon) \binom{n}{2}$ contains a $K_{r+1}(t)$ where $t = \lceil 2^{-r-1}(1/(r-1)!) \epsilon \log n \rceil$.