
MATHEMATICAL TRIPOS PART II (2004–05)

Graph Theory - Problem Sheet 2 of 4 A.G. Thomason

Note: The exercises are largely independent of each other — so, if you can’t do one, go on to another.

15) Let G be a graph of order n.
(i) Let x and y be non-adjacent vertices with d(x) + d(y) ≥ n. Show that G is

Hamiltonian (has a Hamiltonian cycle) if and only if G+ xy is.
(ii) Form the closure C(G) of G by repeatedly joining pairs of vertices whose degree

sum is at least n, until no such pairs remain. Show that C(G) is well-defined
(that is, the order in which pairs are joined is immaterial).

(iii) Deduce that, if d(x) + d(y) ≥ n whenever xy /∈ E(G), then G is Hamiltonian.

16) Construct a graph of order n with no Hamiltonian cycle and with size
(

n
2

)

− (n− 2).
Show that no greater size can be achieved.

17) Show directly, without appealing to Turán’s theorem, that if G is a graph of order n
and δ(G) > δ(Tr(n)) = n− dn/re then G contains Kr+1.

18) Let v1, . . . , vn be vectors of length at least one in some Euclidean space. Prove that
there are at most bn2/4c pairs i < j with ||vi + vj || < 1.
[Hint. Show there’s a pair with ||vi + vj || ≥ 1 and 1 ≤ i < j ≤ 3.]

19) Let v1, . . . , v3n be vectors in R2 with ||vi− vj || ≤ 1 for all i, j. Prove that at most 3n2

of the distances ||vi − vj || can, in fact, exceed 1/
√
2.

[Hint. Can all the distances amongst four of the points exceed 1/
√
2 ?]

20) Let G have n ≥ r + 1 vertices and tr−1(n) + 1 edges.
(i) Prove that for every p in the range r ≤ p ≤ n, G has a subgraph of order p and

size at least tr−1(p) + 1.
(ii) Deduce that if r ≥ 3 then G contains all but one edge of a Kr+1.

21) Prove that for n ≥ 5 every graph of order n with bn2/4c + 2 edges contains two
triangles with exactly one vertex in common.

22) For each p in the range 2 ≤ p ≤ n/2, construct a connected regular graph of order n
containing Kp but not Kp+1. On the other hand, show that if p > n/2 and G is a
regular graph of order n containing Kp, then G = Kn.

23) Prove that if |G| = n and e(G) >
n

4
{1+

√
4n− 3} then G contains a cycle of length 4.

24) Let G be a graph of order n and let G1, . . . , Gn be the subgraphs of order n − 1
obtainable by removing a single vertex. Show that

∑n

i=1 e(Gi) = (n− 2)e(G).

Let F be a graph and let cn = ex(n;F )/
(

n
2

)

. Deduce that cn ≤ cn−1 and hence that
limn→∞ cn exists.

25) Show that limn→∞ ex(n;P )/
(

n
2

)

= 1
2 , where P is the cubic graph of order 10 called

the Petersen graph, shown here.

The Petersen Graph

.............................................................................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...............................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
........................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................................

•

•

••

• •

•
• •
•

A.G.Thomason@dpmms.cam.ac.uk - 1 - 23 February 2005



26) The upper density ud(G) of an infinite graph G is the supremum of the densities of
its large finite subgraphs; that is,

ud(G) = lim
n→∞

sup { e(H)/
(

|H|
2

)

: H ⊂ G, n ≤ |H| <∞} .

Show that, for every G, ud(G) ∈ {0, 1
2 ,

2
3 ,

3
4 , . . . , 1− 1

r
, . . . , 1}.

Further Problems
Note: the examples above are minimal to cover the course; you are encouraged to do those below also.

F8) Let A = (aij)
n
1 be an n × n doubly stochastic matrix, that is, its entries are non-

negative and the rows and columns each sum to one. Show that A is in the convex
hull of the set of n × n permutation matrices, i.e. there are permutation matrices
P1, P2, . . . , Pm such that A =

∑m

1 λiPi and
∑m

1 λi = 1. [Let a∗ij = daije, A∗ = (a∗ij)
n
1 ,

and let G = G2(n, n) be the bipartite graph naturally associated with A∗. Show that
G has a 1-factor and deduce that one can find a permutation matrix P and a real λ,
0 < λ ≤ 1, such that A − λP = B = (bij)

n
1 satisfies bij ≥ 0 and B has at least one

more 0 entry than A.] How small can one choose m?

F9) Reduce Menger’s Theorem to Hall’s Theorem in the following way. Let G be a minimal
counterexample to the assertion that there are always κ(a, b) vertex disjoint paths
between two non-adjacent vertices a and b. Show, as in lectures, that if κ(a, b) = k
and S is a k-cut then S ⊂ Γ(a) or S ⊂ Γ(b).

Therefore (by minimality) no vertex lies outside Γ(a)∪Γ(b), else it could be removed.
Likewise (by minimality) Γ(a) ∩ Γ(b) = ∅, for any vertex in this set can be removed.
But then G− {a, b} has bipartition Γ(a), Γ(b) and we can apply Hall’s Theorem.

F10) The independence number β(G) of a graph is the size of a largest independent vertex
subset (spanning no edges). Show that if β(G) ≤ κ(G) then G is Hamiltonian.
[Hint. If not, let C be a largest cycle in G and let x ∈ V (G)−V (C). Find κ(G) paths
from x to C, and consider the vertices on C preceding the endvertices of these paths.]

+F11) Show that an r−regular graph of order 2r + 1 is Hamiltonian.

F12) Let G be a graph of order n and average degree d = 2e(G)/n. Let S be the sum
∑

uv∈E(G) d(u) + d(v). Show that nd2 ≤ S =
∑

u∈G d(u)2. Hence deduce that, if

d(u) + d(v) ≤ 2D whenever uv ∈ E(G), then d ≤ D.
In particular, show that if G satisfies the Ore degree condition, namely d(u)+d(v) ≥ n
whenever uv /∈ E(G), then e(G) ≥ n2/4.

F13) Let G be a graph of order n satisfying the anti-Ore condition; that is, d(u)+d(v) ≥ n
whenever uv ∈ E(G). What is the minimum value of e(G) if δ(G) ≥ 1? Can you find
the minimum if δ(G) = d ≤ n/2?

F14) By inspecting the given proof of the Erdős-Stone Theorem, prove that there is a
function n2(r, ε) such that every graph G of order n > n2 with δ(G) ≥ (1− 1/r + ε)n
contains a Kr+1(t) where t = d2−r+1(1/(r−1)!)ε log ne, and every graph G of order n
with e(G) ≥ (1− 1/r+ ε)

(

n
2

)

contains a Kr+1(t) where t = d2−r−1(1/(r− 1)!)ε log ne.
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