Geometry & Groups, 2014 – Sheet 4

- 1. Construct a Schottky group (i.e. a Kleinian group generated by Möbius maps which pair suitable disjoint discs) whose limit set is contained in the real line.
- 2. Let $G \leq$ Möb be a Schottky group generated by maps pairing discs with disjoint closures.
 - (i) Prove that G contains no elliptic or parabolic elements.
 - (ii) Prove that the limit set $\Lambda(G)$ is totally disconnected.

(iii) Explain why the quotient \mathbb{H}^3/G is a "handlebody" (the open region in space bound by a surface of some genus ≥ 1).

3. (i) Show that the maps $x \mapsto x/3$ and $x \mapsto 2/3 + x/3$ have non-empty invariant sets other than the middle-thirds Cantor set.

(ii) Find two similarities S_1 , S_2 of \mathbb{R} such that the unit interval [0,1] is the unique non-empty compact invariant set for the S_i .

(iii) Write the Cantor set C as the invariant set of a collection of *three* similarities of \mathbb{R} , and hence (re-)compute its Hausdorff dimension.

4. Let $\mathbb{Z}_2^{\mathbb{N}}$ denote the space of sequences $\mathbf{x} = (\mathbf{x_0}, \mathbf{x_1}, \mathbf{x_2}, \ldots)$ with $x_j \in \{0, 1\}$ for every j. Define a metric on $\mathbb{Z}_2^{\mathbb{N}}$ by

$$d(\mathbf{x}, \mathbf{y}) = \mathbf{2^{-n}}$$
 when $\mathbf{n} = \min\{\mathbf{k} \mid \mathbf{x_k} \neq \mathbf{y_k}\}$

(and $d(\mathbf{x}, \mathbf{y}) = \mathbf{0}$ if $\mathbf{x} = \mathbf{y}$). Construct a homeomorphism from $(\mathbb{Z}_2^{\mathbb{N}}, d)$ to the Cantor middle-thirds set C. Describe the self-similarities of C in terms of this space of sequences.

5. (i) Let F be a finite subset of \mathbb{R}^n . Show that the zero-dimensional Hausdorff measure $\mathcal{H}^0(F)$ is the cardinality of F.

(ii) Show that for infinitely many (or even every) $s \in [0, 2]$ there is a totally disconnected subset $F \subset \mathbb{R}^2$ for which $\dim_H(F) = s$.

6. (i) Compute the Hausdorff dimension of the Sierpinski carpet, given by cutting a square into nine equal pieces, and removing the central one.

(ii) Let $F = \{x \in \mathbb{R} \mid x = b_m b_{m-1} \dots b_1 a_1 a_2 \dots$ with $b_i, a_j \neq 5\}$ be those points on the line which admit decimal expansions omitting the number 5. What is $\dim_H(F)$?

(iii) Construct a fractal in the plane whose Hausdorff dimension is given by the positive real solution s to the equation $4(\frac{1}{4})^s + (\frac{1}{2})^s = 1$.

7. (i) Suppose $F \subset \mathbb{R}^n$ is written as $F = \bigcup_{i \in \mathbb{Z}} F_i$. Show $\dim_H(F) = \sup_i \{\dim_H(F_i)\}$.

(ii) Deduce that if $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable, then for every subset $F \subset \mathbb{R}$, $\dim_H(f(F)) \leq \dim_H(F)$.

(iii) Now consider $f : \mathbb{R} \to \mathbb{R}$ taking $x \mapsto x^2$. By considering the squareroot function $\mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, or otherwise, show that for every $F \subset \mathbb{R}$, $\dim_H(f(F)) = \dim_H(F)$.

- 8. Let (X, d) be a metric space and $\dots \supset A_n \supset A_{n+1} \supset \dots$ be a sequence of decreasing non-empty compact subsets of X. Prove that the intersection $\cap_k A_k$ is non-empty and compact. If the A_k were non-empty and open would the intersection necessarily be (i) non-empty (ii) open ?
- 9. Show that Hausdorff distance $d_{Haus}(A, B)$ defines a metric space structure on the set of compact subsets of a given metric space.

[Recall $d_{Haus}(A, B) = \inf\{\delta | A \subset \mathcal{U}_{\delta}(B), B \subset \mathcal{U}_{\delta}(A)\}$, where \mathcal{U}_{δ} denotes the metric δ -neighbourhood.]

10. Give explicit examples of Kleinian groups realising 3 different values of Hausdorff dimension for their limit sets. Justify your answer!

The final two questions are optional extras.

A (Fractals ubiquitous)

(i) Let $S_i : \mathbb{R}^n \to \mathbb{R}^n$ be contractions of fixed factor $c \in (0, 1)$ for $1 \le i \le m$. Let $E \subset \mathbb{R}^n$ be any non-empty compact set and let F be the invariant set for the $\{S_i\}$. Show that for the Hausdorff distance:

$$d_{Haus}(E,F) \le \frac{1}{1-c} d_{Haus}(E,\cup_{j=1}^{m} S_j(E))$$

(ii) Fix any non-empty compact set $E \subset \mathbb{R}^n$ and $\delta > 0$. Considering a covering of E by a finite set of balls, find contracting similarities $\{S_i, 1 \leq i \leq m\}$ for which $E \subset \bigcup_j \mathcal{U}_{\delta/2}(S_j(E))$ and $\bigcup_j S_j(E) \subset \mathcal{U}_{\delta/2}(E)$. Deduce that $d_{Haus}(E, F) < \delta$ for the "fractal" invariant set F of the $\{S_j\}$. Upshot: every E can be approximated by fractals.

B (Weighing dust)

Take a classical Schottky group G (on disjoint circles C_i), with limit set a Cantor dust Λ . For each real r > 0 let N(r) be the (finite!) number of image circles $\{g(C_i) \mid g \in G\}$ with Euclidean radius > r. Explain *heuristically* why $N(r) \approx (const/r)^s$ for $s = \dim_H(\Lambda)$ and $r \ll 1$. Hence we expect $\dim_H(\Lambda) = \lim_{r \to 0} (-\log N(r)/\log r)$.

> Ivan Smith is200@cam.ac.uk