
1

Geometry & Groups, 2014 – Sheet 4

1. Construct a Schottky group (i.e. a Kleinian group generated by Möbius
maps which pair suitable disjoint discs) whose limit set is contained in the
real line.

2. Let G ≤ Möb be a Schottky group generated by maps pairing discs with
disjoint closures.

(i) Prove that G contains no elliptic or parabolic elements.

(ii) Prove that the limit set Λ(G) is totally disconnected.

(iii) Explain why the quotient H3/G is a “handlebody” (the open region
in space bound by a surface of some genus ≥ 1).

3. (i) Show that the maps x 7→ x/3 and x 7→ 2/3 + x/3 have non-empty
invariant sets other than the middle-thirds Cantor set.

(ii) Find two similarities S1, S2 of R such that the unit interval [0, 1] is
the unique non-empty compact invariant set for the Si.

(iii) Write the Cantor set C as the invariant set of a collection of three
similarities of R, and hence (re-)compute its Hausdorff dimension.

4. Let ZN
2 denote the space of sequences x = (x0,x1,x2, . . .) with xj ∈ {0, 1}

for every j. Define a metric on ZN
2 by

d(x,y) = 2−n when n = min{k |xk 6= yk}

(and d(x,y) = 0 if x = y). Construct a homeomorphism from (ZN
2 , d)

to the Cantor middle-thirds set C. Describe the self-similarities of C in
terms of this space of sequences.

5. (i) Let F be a finite subset of Rn. Show that the zero-dimensional Haus-
dorff measure H0(F ) is the cardinality of F .

(ii) Show that for infinitely many (or even every) s ∈ [0, 2] there is a totally
disconnected subset F ⊂ R2 for which dimH(F ) = s.

6. (i) Compute the Hausdorff dimension of the Sierpinski carpet, given by
cutting a square into nine equal pieces, and removing the central one.

(ii) Let F = {x ∈ R |x = bmbm−1 . . . b1.a1a2 . . . with bi, aj 6= 5} be those
points on the line which admit decimal expansions omitting the number
5. What is dimH(F )?

(iii) Construct a fractal in the plane whose Hausdorff dimension is given
by the positive real solution s to the equation 4( 1

4 )s + ( 1
2 )s = 1.

7. (i) Suppose F ⊂ Rn is written as F = ∪i∈ZFi. Show dimH(F ) =
supi{dimH(Fi)}.
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(ii) Deduce that if f : R→ R is continuously differentiable, then for every
subset F ⊂ R, dimH(f(F )) ≤ dimH(F ).

(iii) Now consider f : R → R taking x 7→ x2. By considering the square-
root function R≥0 → R≥0, or otherwise, show that for every F ⊂ R,
dimH(f(F )) = dimH(F ).

8. Let (X, d) be a metric space and · · · ⊃ An ⊃ An+1 ⊃ · · · be a sequence of
decreasing non-empty compact subsets of X. Prove that the intersection
∩kAk is non-empty and compact. If the Ak were non-empty and open
would the intersection necessarily be (i) non-empty (ii) open ?

9. Show that Hausdorff distance dHaus(A,B) defines a metric space structure
on the set of compact subsets of a given metric space.

[Recall dHaus(A,B) = inf{δ |A ⊂ Uδ(B), B ⊂ Uδ(A)}, where Uδ denotes
the metric δ-neighbourhood.]

10. Give explicit examples of Kleinian groups realising 3 different values of
Hausdorff dimension for their limit sets. Justify your answer!

The final two questions are optional extras.

A (Fractals ubiquitous)

(i) Let Si : Rn → Rn be contractions of fixed factor c ∈ (0, 1) for 1 ≤ i ≤
m. Let E ⊂ Rn be any non-empty compact set and let F be the invariant
set for the {Sj}. Show that for the Hausdorff distance:

dHaus(E,F ) ≤ 1

1− c
dHaus(E,∪mj=1Sj(E))

(ii) Fix any non-empty compact set E ⊂ Rn and δ > 0. Considering a
covering of E by a finite set of balls, find contracting similarities {Si, 1 ≤
i ≤ m} for which E ⊂

⋃
j Uδ/2(Sj(E)) and

⋃
j Sj(E) ⊂ Uδ/2(E). Deduce

that dHaus(E,F ) < δ for the “fractal” invariant set F of the {Sj}. Upshot:
every E can be approximated by fractals.

B (Weighing dust)

Take a classical Schottky group G (on disjoint circles Ci), with limit set
a Cantor dust Λ. For each real r > 0 let N(r) be the (finite!) number of
image circles {g(Ci) | g ∈ G} with Euclidean radius > r. Explain heuris-
tically why N(r) ≈ (const/r)s for s = dimH(Λ) and r � 1. Hence we
expect dimH(Λ) = limr→0(− logN(r)/ log r).
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