Geometry \& Groups, 2014 - Sheet 4

1. Construct a Schottky group (i.e. a Kleinian group generated by Möbius maps which pair suitable disjoint discs) whose limit set is contained in the real line.
2. Let $G \leq$ Möb be a Schottky group generated by maps pairing discs with disjoint closures.
(i) Prove that G contains no elliptic or parabolic elements.
(ii) Prove that the limit set $\Lambda(G)$ is totally disconnected.
(iii) Explain why the quotient \mathbb{H}^{3} / G is a "handlebody" (the open region in space bound by a surface of some genus ≥ 1).
3. (i) Show that the maps $x \mapsto x / 3$ and $x \mapsto 2 / 3+x / 3$ have non-empty invariant sets other than the middle-thirds Cantor set.
(ii) Find two similarities S_{1}, S_{2} of \mathbb{R} such that the unit interval $[0,1]$ is the unique non-empty compact invariant set for the S_{i}.
(iii) Write the Cantor set C as the invariant set of a collection of three similarities of \mathbb{R}, and hence (re-)compute its Hausdorff dimension.
4. Let $\mathbb{Z}_{2}^{\mathbb{N}}$ denote the space of sequences $\mathbf{x}=\left(\mathbf{x}_{\mathbf{0}}, \mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots\right)$ with $x_{j} \in\{0,1\}$ for every j. Define a metric on $\mathbb{Z}_{2}^{\mathbb{N}}$ by

$$
d(\mathbf{x}, \mathbf{y})=\mathbf{2}^{-\mathbf{n}} \quad \text { when } \mathbf{n}=\min \left\{\mathbf{k} \mid \mathbf{x}_{\mathbf{k}} \neq \mathbf{y}_{\mathbf{k}}\right\}
$$

(and $d(\mathbf{x}, \mathbf{y})=\mathbf{0}$ if $\mathbf{x}=\mathbf{y})$. Construct a homeomorphism from $\left(\mathbb{Z}_{2}^{\mathbb{N}}, d\right)$ to the Cantor middle-thirds set C. Describe the self-similarities of C in terms of this space of sequences.
5. (i) Let F be a finite subset of \mathbb{R}^{n}. Show that the zero-dimensional Hausdorff measure $\mathcal{H}^{0}(F)$ is the cardinality of F.
(ii) Show that for infinitely many (or even every) $s \in[0,2]$ there is a totally disconnected subset $F \subset \mathbb{R}^{2}$ for which $\operatorname{dim}_{H}(F)=s$.
6. (i) Compute the Hausdorff dimension of the Sierpinski carpet, given by cutting a square into nine equal pieces, and removing the central one.
(ii) Let $F=\left\{x \in \mathbb{R} \mid x=b_{m} b_{m-1} \ldots b_{1}, a_{1} a_{2} \ldots\right.$ with $\left.b_{i}, a_{j} \neq 5\right\}$ be those points on the line which admit decimal expansions omitting the number 5. What is $\operatorname{dim}_{H}(F)$?
(iii) Construct a fractal in the plane whose Hausdorff dimension is given by the positive real solution s to the equation $4\left(\frac{1}{4}\right)^{s}+\left(\frac{1}{2}\right)^{s}=1$.
7. (i) Suppose $F \subset \mathbb{R}^{n}$ is written as $F=\cup_{i \in \mathbb{Z}} F_{i}$. Show $\operatorname{dim}_{H}(F)=$ $\sup _{i}\left\{\operatorname{dim}_{H}\left(F_{i}\right)\right\}$.
(ii) Deduce that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable, then for every subset $F \subset \mathbb{R}, \operatorname{dim}_{H}(f(F)) \leq \operatorname{dim}_{H}(F)$.
(iii) Now consider $f: \mathbb{R} \rightarrow \mathbb{R}$ taking $x \mapsto x^{2}$. By considering the squareroot function $\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$, or otherwise, show that for every $F \subset \mathbb{R}$, $\operatorname{dim}_{H}(f(F))=\operatorname{dim}_{H}(F)$.
8. Let (X, d) be a metric space and $\cdots \supset A_{n} \supset A_{n+1} \supset \cdots$ be a sequence of decreasing non-empty compact subsets of X. Prove that the intersection $\cap_{k} A_{k}$ is non-empty and compact. If the A_{k} were non-empty and open would the intersection necessarily be (i) non-empty (ii) open ?
9. Show that Hausdorff distance $d_{\text {Haus }}(A, B)$ defines a metric space structure on the set of compact subsets of a given metric space.
$\left[\right.$ Recall $d_{\text {Haus }}(A, B)=\inf \left\{\delta \mid A \subset \mathcal{U}_{\delta}(B), B \subset \mathcal{U}_{\delta}(A)\right\}$, where \mathcal{U}_{δ} denotes the metric δ-neighbourhood.]
10. Give explicit examples of Kleinian groups realising 3 different values of Hausdorff dimension for their limit sets. Justify your answer!

The final two questions are optional extras.
A (Fractals ubiquitous)
(i) Let $S_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be contractions of fixed factor $c \in(0,1)$ for $1 \leq i \leq$ m. Let $E \subset \mathbb{R}^{n}$ be any non-empty compact set and let F be the invariant set for the $\left\{S_{j}\right\}$. Show that for the Hausdorff distance:

$$
d_{H a u s}(E, F) \leq \frac{1}{1-c} d_{H a u s}\left(E, \cup_{j=1}^{m} S_{j}(E)\right)
$$

(ii) Fix any non-empty compact set $E \subset \mathbb{R}^{n}$ and $\delta>0$. Considering a covering of E by a finite set of balls, find contracting similarities $\left\{S_{i}, 1 \leq\right.$ $i \leq m\}$ for which $E \subset \bigcup_{j} \mathcal{U}_{\delta / 2}\left(S_{j}(E)\right)$ and $\bigcup_{j} S_{j}(E) \subset \mathcal{U}_{\delta / 2}(E)$. Deduce that $d_{\text {Haus }}(E, F)<\delta$ for the "fractal" invariant set F of the $\left\{S_{j}\right\}$. Upshot: every E can be approximated by fractals.

B (Weighing dust)

Take a classical Schottky group G (on disjoint circles C_{i}), with limit set a Cantor dust Λ. For each real $r>0$ let $N(r)$ be the (finite!) number of image circles $\left\{g\left(C_{i}\right) \mid g \in G\right\}$ with Euclidean radius $>r$. Explain heuristically why $N(r) \approx(\text { const } / r)^{s}$ for $s=\operatorname{dim}_{H}(\Lambda)$ and $r \ll 1$. Hence we expect $\operatorname{dim}_{H}(\Lambda)=\lim _{r \rightarrow 0}(-\log N(r) / \log r)$.

Ivan Smith
is200@cam.ac.uk

