Geometry & Groups, 2014 - Sheet 3

- 1. Let J denote inversion in the unit sphere $S^2 \subset \mathbb{R}^3$. If Σ is any sphere in \mathbb{R}^3 , show that Σ is orthogonal to S^2 if and only if the inversions in S^2 and Σ commute, i.e. $J \circ J_{\Sigma} = J_{\Sigma} \circ J$.
- 2. Let f, g be Möbius maps. Suppose g is loxodromic, and that f and g have exactly one common fixed point. Prove that the subgroup $\langle f, g \rangle$ generated by f and g is not discrete.
- 3. Suppose $G \leq \text{M\"ob}(\mathbb{D})$ is discrete and acts properly discontinuously in \mathbb{D} . How are the fundamental domains for G acting on \mathbb{D} and for G acting on hyperbolic 3-space \mathbb{H}^3 related?
- 4. Let l, l' be geodesics in \mathbb{H}^n , n = 2, 3.
 - (i) Draw the set of points which are a bounded distance δ away from l.
 - (ii) Draw the set of points which are equidistant from l, l'.
 - (iii) Suppose now l, l', l'' are geodesics in \mathbb{H}^2 which meet pairwise, bounding a hyperbolic triangle. Prove that the angle bisectors of the triangle meet at a point.
 - (iv) If 3 geodesics $l, l', l'' \subset \mathbb{H}^3$ meet pairwise, must they lie in a copy of the hyperbolic plane $\mathbb{H}^2 \subset \mathbb{H}^3$?
- 5. The translation length $\eta(g)$ of an orientation-preserving isometry $g \in \text{Isom}^+(\mathbb{H}^3)$ is $\inf_{p \in \mathbb{H}^3} d_{hup}(p, g(p))$.
 - (i) Show that this is achieved along the axis of the isometry, if there is an axis. What happens if there is no axis?
 - (ii) Show the translation length of $m_k : z \mapsto kz$ is $\log |k|$.
 - (iii) Find the translation length of $z \mapsto \frac{2z+1}{5z+3}$.
- 6. Two distinct geodesics l_1, l_2 in \mathbb{H}^3 are parallel if they have a common end-point on $\partial \mathbb{H}^3 = S^2$.
 - (i) Show that if l_1 and l_2 are not parallel, the minimum distance

$$\inf\{d_{hyp}(x,y) \mid x \in l_1, y \in l_2\}$$

is realised. Are the points which realise it unique?

- (ii) Show that two non-parallel lines have a unique common perpendicular. [Hint: consider separately the cases in which the minimum distance between the two lines is zero or is strictly positive.]
- 7. (i) Show that every orientation-preserving isometry of hyperbolic 3-space is the product $R_1 \circ R_2$ of two Möbius maps of order 2.
 - (ii) In terms of the geometry of the R_i , how is the division into types (elliptic / parabolic / hyperbolic / loxodromic) realised?

- 8. An invariant disc for a Kleinian group $G \leq \text{M\"ob}$ is a disc in $\mathbb{C} \cup \{\infty\}$ mapped to itself by every element of G.
 - (i) Show that if G contains a loxodromic element it has no invariant disc.
 - (ii) Give an example of a subgroup G of the Möbius group generated by two elements which contains no loxodromic element and which has no invariant disc.
 - (iii) Show the limit set of G is contained in the boundary of any invariant disc.
- 9. Let G be a Kleinian group which contains a hyperbolic or loxodromic element. Show that the largest open set $\Omega(G)$ in $\mathbb{C} \cup \{\infty\}$ on which G acts properly discontinuously is the complement of the limit set, i.e. $\Omega(G) = (\mathbb{C} \cup \{\infty\}) \setminus \Lambda(G)$. Deduce that $\Omega(G)$ is empty if and only if all the orbits of G on the sphere are dense.

Give an example of a Kleinian group for which the limit set is empty.

- 10. (i) Show that any Kleinian group G is countable.
 - (ii) Show that a non-empty closed subset of a complete metric space such that every point is an accumulation point is necessarily uncountable.
 - (iii) Let $G = \langle A, B \rangle$ be a free Fuchsian group associated to a triple of pairwise disjoint geodesics $\gamma_i \subset \mathbb{D} \cong \mathbb{H}^2$. Show that one can (uniquely) label the points of the limit set by (infinite length) words in $\{A, B, A^{-1}, B^{-1}\}$ but that one cannot label the points by elements of G.
 - (iv) Identify the quotient space $\mathbb{H}^2/\langle A, B \rangle$. [If you know some algebraic topology, prove directly that the quotient space has fundamental group a free group of rank 2.] If G' is the larger group generated by the inversions in the γ_i , what is \mathbb{H}^2/G' ?
- 11. (i) Suppose four circles lie in a tangent chain (i.e. C_i is tangent to C_{i+1} and no others for i = 0, 1, 2, 3 with indices mod 4). Show the four tangency points lie on a circle.
 - (ii) Show two triples of pairwise tangent circles are equivalent under the action of the Möbius group. Deduce that the Appollonian gasket is conformally unique.
- 12. Prove the "trace identity" $tr(AB) + tr(AB^{-1}) = tr(A)tr(B)$ for matrices A and B in $SL_2(\mathbb{C})$. Deduce that traces of all words in A and B and their inverses (i.e. of all elements of the group $\langle A, B \rangle$ generated by A and B) are determined by the three numbers $\{tr(A), tr(B), tr(AB)\}$.
 - (ii)* Suppose A and B are both loxodromic. Prove that $\langle A, B \rangle$ is conjugate to a subgroup of $SL_2(\mathbb{R})$ (hence defines a Fuchsian group) if and only if $(tr(A), tr(B), tr(AB)) \in \mathbb{R}^3$.

Ivan Smith is 200@cam.ac.uk