Geometry & Groups, 2014 – Sheet 2

1. Let C_1 and C_2 be two circles in $\mathbb{C} \cup \{\infty\}$.

(i) Show there is some Möbius map taking C_1 to C_2 .

(ii) If C_1 and C_2 are disjoint, show there is a Möbius map taking the C_i to two concentric circles in \mathbb{C} each centred on the origin. Hence show there is a Möbius map exchanging C_1 and C_2 .

(iii) Show that the map $z \mapsto z + \frac{1}{z}$ does not preserve the set of circles and lines in $\mathbb{C} \cup \{\infty\}$.

- 2. For $g \in \text{M\"ob}$ let $S_n(g)$ be the set of *n*-th roots $\{h \in \text{M\"ob} | h^n = g\}$.
 - (i) If $g \in \text{M\"ob}$ satisfies $g^n(z) = z$ for some $n \ge 2$ then show g is elliptic.
 - (ii) Show $g = e \Rightarrow |S_n(g)| = \infty$;
 - (iii) Show that if g is parabolic $\Rightarrow |S_n(g)| = 1$;
 - (iv) Show that in all other cases, $|S_n(g)| = n$.
- 3. Let g be a Möbius transformation and suppose z is a fixed point of g, so g(z) = z. Describe the set Z(g) of all Möbius transformations that commute with g, and hence describe the set $\{h(z) \mid h \in Z(g)\}$.
- 4. (i) For points $p, q \in \mathbb{C}$, draw a picture of all the possible circles Γ for which inversion in Γ exchanges p and q.

(ii) Prove that every Möbius map is a composition of inversions. How many do you need?

(iii) If g is an elliptic isometry of the hyperbolic plane which leaves a circle C invariant, show inversion in C exchanges the two fixed points of g.

(iv) Prove that inversion in a circle $\Gamma \subset \mathbb{C} \cup \{\infty\}$ with centre c and radius r takes a point $p \in \mathbb{C}$ to the unique point p' on the line through c and p for which $|c-p|.|c-p'| = r^2$. Deduce that inversion J_{Γ} in Γ is given by $J_{\Gamma}(z) = c + \frac{r^2}{\overline{z} - \overline{c}}$. (v) Let J denote inversion in the unit sphere $S^2 \subset \mathbb{R}^3$. If Σ is any sphere in \mathbb{R}^3 , show that Σ is orthogonal to S^2 if and only if the inversions in S^2 and Σ commute, i.e. $J \circ J_{\Sigma} = J_{\Sigma} \circ J$.

5. (i) Let $S^2 \subset \mathbb{R}^3$ denote the unit sphere. Find a formula for stereographic projection $S^2 \setminus \{(0,0,1)\} \to \mathbb{C}$. Hence, or otherwise, show that the antipodal map which sends a point $(x, y, z) \in S^2$ on the sphere to its opposite (-x, -y, -z)corresponds under stereographic projection to the map $J : z \mapsto -1/\overline{z}$.

(ii) Let g be a Möbius map which preserves the usual distance on the sphere S^2 (i.e. the Euclidean distance induced by considering $S^2 \subset \mathbb{R}^3$). Show that g commutes with the map J, and hence prove that g can be represented by a matrix belonging to the group

$$SU(2) = \left\{ \left(\begin{array}{cc} a & b \\ -\overline{b} & \overline{a} \end{array} \right) \ \left| \ |a|^2 + |b|^2 = 1 \right\} \right\}$$

(iii) Given any element of SU(2), show that the corresponding Möbius map defines a rotation of S^2 , and conclude that the image $\mathbb{P}SU(2) = SU(2)/\pm I$ of SU(2) in the Möbius group is isomorphic to the rotation group SO(3).

6. (i) Show that there is an isometry of the hyperbolic plane \mathbb{H}^2 taking points (p,q) to points (u,v) iff $d_{hyp}(p,q) = d_{hyp}(u,v)$.

(ii) In the upper half-plane model \mathfrak{h} of \mathbb{H}^2 , find the centre of a hyperbolic circle of radius ρ with Euclidean centre $ic \in \mathfrak{h}$.

(iii) Are two hyperbolic triangles of the same area in \mathbb{H}^2 necessarily isometric (i.e. is there an isometry taking one to the other)?

(iv) Show that for any $n \ge 5 \mathbb{H}^2$ contains a regular *n*-gon with all interior angles being right-angles. [Hint: use a "continuity" argument to get the angles right.]

(v) Compute the area of a regular hyperbolic hexagon all of whose interior angles are right-angles.

(vi) If \mathbb{H}^2 is tessellated by compact (i.e. closed and bounded) pairwise-isometric tiles, show that the number of tiles "k steps" away from a given tile grows exponentially with k. What is the corresponding Euclidean statement?

7. (i) Let $\gamma_1, \gamma_2, \gamma_3$ be pairwise disjoint geodesics in the hyperbolic disc D, whose end-points are cyclically ordered so as to bound a "triangular" region. Let J_i denote inversion in γ_i and $A = J_2 \circ J_1$, $B = J_3 \circ J_2$. Explain why the group $\langle A, B \rangle$ is a free group.

(ii) If the geodesics γ_i instead pairwise intersect and bound a closed triangle in D, and if $\langle A, B \rangle$ is still discrete in Isom⁺(\mathbb{H}^2), can it still be a free group? Justify your answer.

(iii) By exhibiting a suitable tessellation, or otherwise, prove that there is a Fuchsian group, i.e. discrete subgroup of $\text{Isom}^+(\mathbb{H}^2)$, which acts on \mathbb{H}^2 with fundamental domain an octagon. [Hint: Escher.]

Ivan Smith is200@cam.ac.uk