## Geometry & Groups, 2014 — Sheet 1

- 1. When are two rotations conjugate in the group of orientation-preserving isometries of the Euclidean plane? What about in the group of all isometries? Justify your answers.
- 2. Show that  $\mathbb{R}$  acts on the plane  $\mathbb{R}^2$  via  $t \cdot (x, y) = (e^t x, e^{-t} y)$ . Draw the orbits, and find the stabilisers of points.
- 3. (i) Use the "orbit-stabiliser theorem" to compute the symmetry group of a cube.
  (ii) By considering a suitable pair of embedded tetrahedra, or otherwise, show that this group has a natural homomorphism onto Z/2. Describe explicitly a non-trivial element of the kernel.
- 4. Let  $s_n$  denote the side length of a regular polygon with n sides, inscribed in the unit circle. Show that  $s_{2n} = \sqrt{2 \sqrt{4 s_n^2}}$  and deduce

$$s_{2^n} = \sqrt{2 - \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}}$$

By considering area, deduce that

$$\pi = \lim_{n \to \infty} 2^n \sqrt{2 - \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}$$

(where the final expression has n nested square roots).

5. (i) Show that the golden ratio  $\tau = \frac{1+\sqrt{5}}{2}$  satisfies  $\tau^2 = 1 + \tau$ .

(ii) Let P be a pentagon with side length l. Show that a diagonal joining two non-adjacent vertices of P has length  $\tau l$ .

(iii) Cut each of two regular pentagons of side length 2 along such diagonals. Show that the resulting four pieces can be combined to make a "tent" of height 1 with base a square of side length  $2\tau$ . By attaching such pyramids to the faces of a cube, show that there is a dodecahedron with vertices

$$(0,\pm 1,\pm \tau^2), \ (\pm 1,\pm \tau^2,0), \ (\pm \tau^2,0,\pm 1), \ (\pm \tau,\pm \tau,\pm \tau).$$

(iv) Show that the dodecahedron contains 5 such cubes, and hence prove that its full symmetry group is a subgroup of O(3) isomorphic to the group  $A_5 \times \mathbb{Z}_2$ . Is this group isomorphic to the symmetric group  $S_5$ ?

6. Draw pictures representing two different non-abelian two-dimensional Euclidean crystallographic groups ("wallpaper groups"), listing all the symmetries of the pictures.

7. Let  $\Lambda \subset \mathbb{R}^2$  be a rank two lattice. A *basis* for  $\Lambda$  is a pair of vectors  $w_1, w_2$  for which  $\Lambda = \mathbb{Z}w_1 \oplus \mathbb{Z}w_2$ . If  $\{w_1, w_2\}$  and  $\{w'_1, w'_2\}$  are two bases for  $\Lambda$ , show that one can write

$$w_1' = aw_1 + bw_2$$
 and  $w_2' = cw_1 + dw_2$ 

for a matrix  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,\mathbb{Z})$  (note any such matrix has determinant  $\pm 1$ ).

8. Consider the two isometries of the Euclidean plane

$$(x, y) \mapsto (x, y+1);$$
  $(x, y) \mapsto (x+1, -y)$ 

Show (i) these generate a non-abelian group; (ii) this group acts properly discontinuously on the plane, meaning around any point (x, y) there is an open set  $U_{(x,y)}$  whose images by elements  $g \neq e$  are all disjoint from  $U_{(x,y)}$ . Find a fundamental domain for the action, and identify the quotient.

9. (i) Show that every element of O(3) is a product of reflections. How many do you need? Explain why "most" elements of determinant -1 are not reflections.
(ii) Classical and the second second

(ii) Show that every isometry of Euclidean space  $\mathbb{R}^3$  with no fixed point is either a translation, a glide reflection (i.e. reflection followed by translation in a vector parallel to the plane of reflection), or a screw rotation (i.e. rotation followed by a translation parallel to the axis of rotation).

10. (i) Show that every group is a subgroup of a permutation group.

(ii) Show that every finite group G is a subgroup of the orthogonal group O(|G|). [Hint: define a vector space  $\mathbb{R}^{|G|}$  of real-valued functions on G. Now look at a natural action of G on this in an obvious basis.]

11. Show that the space of all unoriented lines in the Euclidean plane is naturally parametrised by a Möbius band (without its boundary).

Ivan Smith is200@cam.ac.uk