Geometry & Groups, Part II: 2008-9: Sheet 4

- 1. Construct a Schottky group (i.e. a subgroup of the Möbius group generated by Möbius maps which pair suitable disjoint disks) whose limit set is contained in the real line.
- 2. For a Schottky group generated by maps pairing disks with disjoint closures, the quotient \mathbb{H}^3/G is a "handlebody" (the open region in space bound by a surface of some genus ≥ 1). What is the quotient when the disks in one pair become tangent to one another at their boundary?
- 3. Show that the maps $x \mapsto x/3$ and $x \mapsto 2/3 + x/3$ have non-empty invariant sets other than the Cantor set.
- 4. (i) Find two similarities S₁, S₂ of R such that the unit interval [0, 1] is the unique non-empty compact invariant set for the S_i.
 (ii) Write the Cantor set C as the invariant set of a collection of three similarities of R, and hence (re-)compute its Hausdorff dimension.
- 5. Let F be a finite subset of \mathbb{R}^n . Show that the zero-dimensional Hausdorff measure $\mathcal{H}^0(F)$ is the cardinality of F.
- 6. (i) Compute the Hausdorff dimension of the Sierpinski carpet, given by cutting a square into nine equal pieces, and removing the central one.

(ii) Let $F = \{x \in \mathbb{R} \mid x = b_m b_{m-1} \dots b_1 a_1 a_2 \dots$ with $b_i, a_j \neq 5\}$ be those points on the line which admit decimal expansions omitting the number 5. What is dim_H(F)?

(iii) Construct a fractal in the plane whose Hausdorff dimension is given by the positive real solution s to the equation $4(\frac{1}{4})^s + (\frac{1}{2})^s = 1$.

- 7. Show that for infinitely many (or even every) $s \in [0, 2]$ there is a totally disconnected subset $F \subset \mathbb{R}^2$ for which $\dim_H(F) = s$.
- 8. (i) Suppose $F \subset \mathbb{R}^n$ is written as $F = \bigcup_{i \in \mathbb{Z}} F_i$. Show $\dim_H(F) = \sup_i \{\dim_H(F_i)\}$.

(ii) Deduce that if $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable, then for every subset $F \subset \mathbb{R}$, $\dim_H(f(F)) \leq \dim_H(F)$.

(iii) Now consider $f : \mathbb{R} \to \mathbb{R}$ taking $x \mapsto x^2$. By considering the squareroot function $\mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, or otherwise, show that for every $F \subset \mathbb{R}$, $\dim_H(f(F)) = \dim_H(F)$.

9. Let (X, d) be a metric space and $\dots \supset A_n \supset A_{n+1} \supset \dots$ be a sequence of decreasing non-empty compact subsets of X. Prove that the intersection $\cap_k A_k$ is non-empty and compact. If the A_k were non-empty and open would the intersection necessarily be (i) non-empty (ii) open ?

- 10. Show that Hausdorff distance $d_{Haus}(A, B)$ defines a metric space structure on the set of compact subsets of a given metric space.
- 11. Give explicit examples of Kleinian groups realising 3 different values of Hausdorff dimension for their limit sets. Justify your answer!

Ivan Smith is200@cam.ac.uk