Geometry & Groups, Part II: 2008-9: Sheet 3

- 1. Let J denote inversion in the unit sphere $S^2 \subset \mathbb{R}^3$. If Σ is any sphere in \mathbb{R}^3 , show that Σ is orthogonal to S^2 if and only if the inversions in S^2 and Σ commute, i.e. $J \circ \iota_{\Sigma} = \iota_{\Sigma} \circ J$.
- 2. Suppose $G \leq \text{M\"ob}(\mathbb{D})$ is discrete and acts properly discontinuously in \mathbb{D} . How are the fundamental domains for G acting on \mathbb{D} and for G acting on \mathbb{H}^3 related?
- 3. Compute the area of a regular hyperbolic hexagon all of whose interior angles are right-angles.
- 4. The translation length $\eta(g)$ of an orientation-preserving isometry $g \in \text{Isom}^+(\mathbb{H}^3)$ is $\inf_{p \in \mathbb{H}^n} d_{hyp}(p, g(p))$.

(i) Show that this is achieved along the axis of the isometry, if there is an axis. What happens if there is no axis?

(ii) Show the translation length of $m_k : z \mapsto kz$ is log|k|. Find the translation length of $z \mapsto \frac{2z+1}{5z+3}$.

5. An invariant disc for a Kleinian group $G \leq M \ddot{o} b$ is a disc in $\mathbb{C} \cup \{\infty\}$ mapped to itself by every element of G.

(i) Show that if G contains a loxodromic element it has no invariant disc.

(ii) Give an example of a 2-generator subgroup G of the Möbius group which contains no loxodromic element and which has no invariant disc.

(iii) Show the limit set of ${\cal G}$ is contained in the boundary of any invariant disc.

6. (i) Show that every orientation-preserving isometry of hyperbolic 3-space is the product $R_1 \circ R_2$ of two *Möbius maps* of order 2 (i.e. of two elliptic involutions).

(ii) In terms of the geometry of the R_i , how is the elliptic / parabolic / loxodromic trichotomy realised?

7. Let G be a Kleinian group which contains a hyperbolic or loxodromic element. Show that the largest open set $\Omega(G)$ in $\mathbb{C} \cup \{\infty\}$ on which G acts properly discontinuously is the complement of the limit set, i.e. $\Omega(G) = (\mathbb{C} \cup \{\infty\}) \setminus \Lambda(G)$. Deduce that $\Omega(G)$ is empty if and only if all the orbits of G on the sphere are dense.

Give an example of a Kleinian group for which the limit set is empty.

8. (i) Show that any Kleinian group is countable.

(ii) Show that a non-empty closed subset of a complete metric space such that every point is an accumulation point is necessarily uncountable.

(iii) What does this say about labelling points of a limit set by words in some fixed set of generators of a Kleinian group?

9. (i) Suppose four circles lie in a tangent chain (i.e. C_i is tangent to C_{i+1} and no others for i = 0, 1, 2, 3 with indices mod 4). Show the four tangency points lie on a circle.

(ii) Show two triples of pairwise tangent circles are equivalent under the action of the Möbius group. Deduce that the Appollonian gasket is conformally unique.

- 10. The modular group $\mathbb{P}SL_2(\mathbb{Z})$ is a famous discrete subgroup of the Möbius group. By considering the actions of the elements $z \mapsto z+1$ and $z \mapsto -1/z$, or otherwise, show that a fundamental domain for its action on the upper half-plane \mathfrak{h} is given by $\{z \in \mathfrak{h} \mid |z| > 1, Re(z) \in [-1/2, 1/2]\}$. What does the quotient $\mathfrak{h}/\mathbb{P}SL_2(\mathbb{Z})$ look like ?
- 11.* (i) Prove the "trace identity" $tr(AB) + tr(AB^{-1}) = tr(A)tr(B)$ for matrices A and B in $SL_2(\mathbb{C})$. Deduce that traces of all words in A and B and their inverses (i.e. of all elements of the group $\langle A, B \rangle$ generated by A and B) are determined by the three numbers $\{tr(A), tr(B), tr(AB)\}$.

(ii) Suppose A and B are both loxodromic. Prove that $\langle A, B \rangle$ is conjugate to a subgroup of $SL_2(\mathbb{R})$ if and only if $(tr(A), tr(B), tr(AB)) \in \mathbb{R}^3$.

Ivan Smith is200@cam.ac.uk