1. Use the orbit - stabilzer theorem to compute the size of the symmetry group of a cube. Describe each of the symmetries in this group. Show that the orbit $\operatorname{Orb}(x)$ usually contains as many points as the symmetry group. Find all of the points for which this is untrue.
2. Show that additive the group $\mathbb{Z} \times \mathbb{Z}$ acts on the plane $\mathbb{R}^{2}$ by

$$
\binom{n_{1}}{n_{2}} \cdot\binom{x_{1}}{x_{2}}=\binom{x_{1}+n_{1}}{x_{2}+n_{2}}
$$

and that the unit square $S=\left\{\binom{x_{1}}{x_{2}}: 0 \leqslant x_{1}<1\right.$ and $\left.0 \leqslant x_{2}<1\right\}$ is a fundamental set. Hence show that we can identify the quotient $\mathbb{R}^{2} / \mathbb{Z} \times \mathbb{Z}$ with a torus.
Let $\boldsymbol{u}=\binom{a}{c}, \boldsymbol{v}=\binom{b}{d}$ for some integers $a, b, c, d$ with $a d-b c= \pm 1$. Show that every vector $\boldsymbol{v} \in \mathbb{Z} \times \mathbb{Z}$ can be written as $m \boldsymbol{u}+n \boldsymbol{v}$ for some integers $m$ and $n$. Deduce that the parallelogram

$$
\{\lambda \boldsymbol{u}+\mu \boldsymbol{v}: 0 \leqslant \lambda<1 \text { and } 0 \leqslant \mu<1\}
$$

is also a fundamental set for the group action.
3. Consider the two maps:

$$
A:\binom{x_{1}}{x_{2}} \mapsto\binom{x_{1}}{x_{2}+1} ; \quad B:\binom{x_{1}}{x_{2}} \mapsto\binom{x_{1}+1}{-x_{2}}
$$

acting on the plane $\mathbb{R}^{2}$. Let $G$ be the group they generate. Is $G$ Abelian? Find the orbit of a point $\boldsymbol{x}$ under this group. Find a fundamental set and hence describe the quotient $\mathbb{R}^{2} / G$.
4. Show that there are two ways to embed a regular tetrahedron in cube $C$ so that the vertices of the tetrahedron are also vertices of $C$. Show that the symmetry group of $C$ permutes these tetrahedra and deduce that the symmetry group of $C$ is isomorphic to the Cartesian product $S_{4} \times C_{2}$ of the symmetric group $S_{4}$ and the cyclic group $C_{2}$.
5. Show that two rotations are conjugate in Isom ${ }^{+}\left(\mathbb{E}^{2}\right)$ if and only if they are both rotations through the same angle. When are they conjugate in $\operatorname{Isom}\left(\mathbb{E}^{2}\right)$ ?
Describe all of the conjugacy classes of $\operatorname{Isom}{ }^{+}\left(\mathbb{E}^{2}\right)$ and of $\operatorname{Isom}\left(\mathbb{E}^{2}\right)$.
Let $\mathcal{C}$ be the conjugacy class in $\operatorname{Isom}\left(\mathbb{E}^{2}\right)$ of the reflection $M$ in a line $\ell$. Show that $\operatorname{Isom}\left(\mathbb{E}^{2}\right)$ acts on $\mathcal{C}$ by

$$
(A, R) \mapsto A \circ R \circ A^{-1}
$$

Identify the stablizer of $M$. How is this related to the stabilizer of another element $A \circ M \circ A^{-1}$ of $\mathcal{C}$ ?
6. Describe all of the symmetries of the two patterns below. (Both patterns are continued indefinitely in each direction.)

7. Prove Proposition 2.4 classifying the isometries of Euclidean space $\mathbb{E}^{3}$.
8. (Every finite group is a symmetry group.)

Let $G$ be any finite group and let $R$ be the set of all functions $\phi: G \rightarrow \mathbb{R}$. Show that $R$ is a finite dimensional real vector space. Show that the group $G$ acts on $R$ via

$$
(g, \phi) \mapsto g \cdot \phi \quad \text { where } \quad g \cdot \phi: h \mapsto \phi\left(g^{-1} h\right) .
$$

Find an inner product on $R$ that makes the functions

$$
\varepsilon_{g}: h \mapsto \begin{cases}1 & \text { when } h=g \\ 0 & \text { otherwise }\end{cases}
$$

into an orthonormal basis for $R$. Show that each element of $G$ then acts as an orthogonal linear map on $R$.
9. The number $\tau=\frac{1}{2}(1+\sqrt{5})$ is called the Golden ratio. Show that it satisfies $\tau^{2}=\tau+1$.


In the diagram above, $A B C D E$ is a regular pentagon. Show that the triangles $A B E, P E B$ and $P C D$ are similar. Deduce that the diagonal $B E$ has length $\tau$ times the side length for the pentagon.
10. Take two regular pentagons with sides of length 2 and cut them along a diagonal joining two nonadjacent vertices. Show that the four pieces can be fitted together to form a tent over a square with side length $2 \tau$. Show that the height of the tent is then 1 . Attach six of these tents to the faces of a cube and hence show that the twenty points

$$
\left(0, \pm 1, \pm \tau^{2}\right),\left( \pm 1, \pm \tau^{2}, 0\right),\left( \pm \tau^{2}, 0, \pm 1\right),( \pm \tau, \pm \tau, \pm \tau)
$$

are the vertices of a regular dodecahedron.
Note that the cube is inscribed inside the dodecahedron. How many such inscribed cubes are there?
11. Let $s_{n}, n \geqslant 3$, be the side length of a regular $n$-gon $P_{n}$ inscribed inside the unit circle. Show that $s_{2 n}=\sqrt{2-\sqrt{4-s_{n}^{2}}}$. Deduce that

$$
s_{2^{n}}=\sqrt{2-\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}
$$

Let $A_{n}$ be the area of $P_{n}$. Show that

$$
A_{2^{n+1}}=2^{n-1} s_{2^{n}}
$$

and deduce that

$$
\pi=\lim _{n \rightarrow \infty} 2^{n} \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}}
$$

where there are $n$ nested square roots in the limit.

Please send any comments or corrections to me at: t.k.carne@dpmms.cam.ac.uk .

