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In order to prove the existence of the algebraic closure of an arbitrary field, it is necessary
to use an axiom of set theory known asZorn’s lemma. It is equivalent to the Axiom of
Choice (but I won’t prove the equivalence here: see Halmos’sNave Set Theoryor any
other book on set theory for a proof and discussion). Some believe that one should avoid
the Axiom of Choice wherever possible, as it is less intuitive than the other axioms of set
theory. However a lot of algebra (not to say analysis) would be very awkward without it
(see Theorem A below for one reason why). If one is really concerned about its validity,
it is worth pointing out that one can often avoid using Zorn’s Lemma, at the expense of
some notational complexity (for example, instead of the algebraic closure of a field one
can often make do with the splitting field of a sufficiently large finite set of polynomials).
The material in this handout (other than the statements of Zorn’s Lemma and Theorem A)
is not examinable.

Partial orders and Zorn’s lemma

Let S be a set. A relation6 onS is said to be apartial order if it satisfies:

(i) For all x ∈ S, x 6 x;
(ii) For all x, y, z ∈ S, if x 6 y andy 6 z thenx 6 z;

(iii) For all x, y ∈ S, if x 6 y andy 6 x thenx = y.

S is said to betotally orderedby 6 if moreover:

(iv) For all x, y ∈ S, eitherx 6 y or y 6 x.

A chain is a partially ordered set(S, 6) is a subsetT ⊂ S which is totally ordered by6.
If T ⊂ S is a chain then so is any subset ofT .

Examples:

(a) R is a totally ordered set (with the usual order relation).

(b) LetS = {x ∈ Z | x > 1} ordered by reverse divisibility:

x 4 y ⇔ x/y ∈ Z.

Then(S, 4) is a partially ordered set. Letm > 1 andT = {mi | i > 1}. ThenT is a
chain inS. So is the subset{n! | n > 1}.

(c) Let X be any set,S the set of all subsets ofX with inclusion as the order relation.
ThenS is a partially ordered set.

Let (S, 6) be a partially ordered set, andT any subset ofS. An upper boundfor T is an
elementz ∈ S such thatx 6 z for all x ∈ T . (We don’t require thatz ∈ T .) An element
y ∈ S is said to bemaximalif for any x ∈ S, y 6 x iff x = y.
If S is totally ordered, then it can have at most one maximal element (easy). A general
partially ordered set can have many maximal elements. In the above examples:
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(a) In R an upper bound for a subset is an upper bound in the usual sense. There are no
maximal elements.

(b) In S = {x ∈ Z | x > 1} an elementx ∈ S is a maximal element iff it is prime.
Every chain has an upper upper bound (take the element which is smallest for the
usual ordering onN).

Zorn’s Lemma. Let S be a nonempty partially ordered set. Assume that every chain in
S has an upper bound. ThenS has a maximal element.

As an example of the uses of Zorn’s lemma, we prove:

Theorem A. LetR be a ring (nonzero, with unit element). ThenR has a maximal ideal.

Proof. Let S be the set of all proper (i.e. different fromR itself) ideals ofR, ordered by
inclusion. SinceR is nonzero,{0} ∈ S and soS is nonempty. The maximal elements of
S are then precisely the maximal ideals ofR. We need to check the hypothesis of Zorn’s
lemma. LetT ⊂ S be a chain. DefineJ =

⋃
I∈T I – we claimJ is an upper bound forT .

The only thing which is not obvious is thatJ ∈ S. As J is a union of ideals, it is clearly
an ideal ofR. Moreover it is a proper ideal, for if not then1 ∈ J which is true iff1 ∈ I
for someI ∈ T , which is impossible asI is a proper ideal. ThereforeJ ∈ S and soJ is
an upper bound forT . By Zorn’s lemma,S has maximal elements, henceR has maximal
ideals.

Corollary. Let R be a ring,I $ R a proper ideal. Then there is a maximal ideal ofR
containingI.

Proof. Apply Theorem A toR/I.

Zorn’s lemma is equivalent to two other axioms of Set Theory: the first of these is:

The Axiom of Choice. LetXi (i ∈ I) be a collection of sets, indexed by a setI. If each
Xi is nonempty then so is the Cartesian product

∏
i∈I Xi.

The second requires a further definition. A totally ordered set is said to bewell-ordered
if every non-empty subset contains a least element. For example, the setN with its usual
ordering is well-ordered.

The Well-Ordering Principle. Every set can be well-ordered.

Here is another application of Zorn’s Lemma.

Theorem B. Every vector space has a basis.

Proof. (Sketch) LetV be a vector space. IfV = {0} there is nothing to prove, so we
may assumeV is nonzero. LetS be the set whose elements are the linearly independent
subsets ofV , ordered by inclusion. ThenS is a nonempty partially ordered set. A basis
of V is nothing other than a maximal element ofS. One checks that ifT ⊂ S is a chain,
then

⋃
I∈T I is also a linearly independent subset ofV , hence is an upper bound forT . By

Zorn’s lemma we conclude.
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