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1. Let K = Q(ζ) be the nth cyclotomic field with ζ = e2πi/n. Show that under the isomorphism
Gal(K/Q) ' (Z/nZ)∗, complex conjugation is identified with the residue class of −1 (mod n).
Deduce that if n > 3, then [K : K ∩R] = 2 and show that K ∩R = Q(ζ + ζ−1) = Q(cos 2π/n).

2. Find all the subfields of Q(e2πi/7), expressing them in the form Q(x).

3. (i) Let K be a field, p a prime and K ′ = K(ζ) for some primitive pth root of unity ζ. Let
a ∈ K. Show that Xp − a is irreducible over K if and only if it is irreducible over K ′. Is the
result true if p is not assumed to be prime?

(ii) If K contains a primitive nth root of unity, then we know that Xn − a is reducible over K
if and only if a is a dth power in K for some divisor d > 1 of n. Show that this need not be
true if K doesn’t contain a primitive nth root of unity.

4. Let K be a field containing a primitive mth root of unity for some m > 1. Let a, b ∈ K
such that the polynomials f = Xm − a, g = Xm − b are irreducible. Show that f and g have
the same splitting field if and only if b = cmar for some c ∈ K and r ∈ N with gcd(r, m) = 1.

5. Let f be an irreducible separable quartic, and g its resolvant cubic. Show that the discrim-
inants of f and g are equal.

6. Let f ∈ Q[X] be an irreducible quartic polynomial whose Galois group is A4. Show that
its splitting field can be written in the form K(

√
a,
√

b) where K/Q is a Galois cubic extension
and a, b ∈ K.

7. (i) Show that the Galois group of f(X) = X5 − 4X + 2 over Q is S5, and determine its
Galois group over Q(i).

(ii) Find the Galois group of f(X) = X4 − 4X + 2 over Q and over Q(i).

8. In this question we determine the structure of the groups (Z/mZ)∗.

(i) Let p be an odd prime. Show that for every n ≥ 2, (1+p)pn−2 ≡ 1+pn−1 (mod pn). Deduce
that 1 + p has order pn−1 in (Z/pnZ)∗.

(ii) If b ∈ Z with (p, b) = 1 and b has order p − 1 in (Z/pZ)∗ and n ≥ 1, show that bpn−1
has

order p− 1 in (Z/pnZ)∗. Deduce that for n ≥ 1 and p an odd prime, (Z/pnZ)∗ is cyclic.

(iii) Show that for every n ≥ 3, 52n−3 ≡ 1+2n−1 (mod 2n). Deduce that (Z/2nZ)∗ is generated
by 5 and −1, and is isomorphic to Z/2n−2Z× Z/2Z, for any n ≥ 2.

(iv) Use the Chinese Remainder Theorem to deduce the structure of (Z/mZ)∗ in general.

(v) Dirichlet’s theorem on primes in arithmetic progressions states that if a and b are coprime
positive integers, then the set {an + b | n ∈ N} contains infinitely many primes. Use this, the
structure theorem for finite abelian groups, and part (iv) to show that every finite abelian group
is isomorphic to a quotient of (Z/mZ)∗ for suitable m. Deduce that every finite abelian group
is the Galois group of some Galois extension K/Q. [It is a long-standing unsolved problem to
show this holds for an arbitrary finite group.]

(vi) Find an explicit x for which Q(x)/Q is abelian with Galois group Z/23Z.
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9. Here and in question 11, ζm = e2πi/m for a positive integer m.

(i) Find the quadratic subfields of Q(ζ15).

(ii) Show that Q(ζ21) has exactly three subfields of degree 6 over Q. Show that one of them
is Q(ζ7), one is real, and the other is a cyclic extension K/Q(ζ3). Use a suitable Lagrange
resolvent to find a ∈ Q(ζ3) such that K = Q(ζ3, 3

√
a).

10. Let Φn ∈ Z[X] denote the nth cyclotomic polynomial. Show that:

(i) If n is odd then Φ2n(X) = Φn(−X).

(ii) If p is a prime dividing n then Φnp(X) = Φn(Xp).

(iii) If p and q are distinct primes then the nonzero coefficients of Φpq are alternately +1 and
−1. [Hint: First show that if 1/(1−Xp)(1−Xq) is expanded as a power series in X, then the
coefficients of Xm with m < pq are either 0 or 1.]

(iv) If n is not divisible by at least three distinct odd primes then the coefficients of Φn are −1,
0 or 1.

(v) Φ3×5×7 has at least one coefficient which is not −1, 0 or 1.

Additional assorted examples (of varying difficulty)

11. (i) Let p be an odd prime. Show that if r ∈ Z then
∑

0≤s<p ζrs
p equals p if r ≡ 0 (mod p)

and equals 0 otherwise.

(ii) Let τ =
∑

0≤n<p ζn2

p . Show that ττ = p. Show also that τ is real if −1 is a square mod p,
and otherwise τ is purely imaginary (i.e. τ/i ∈ R).

(iii) Let L = Q(ζp). Show that L has a unique subfield K which is quadratic over Q, and that
K = Q(

√
εp) where ε = (−1)(p−1)/2.

(iv) Show that Q(ζm) ⊂ Q(ζn) if m|n. Deduce that if 0 6= m ∈ Z then Q(
√

m) is a subfield of
Q(ζ4|m|). [This is a simple case of the Kronecker-Weber Theorem, which says that every abelian
extension of Q is a subfield of a suitable Q(ζm).]

12. Show that Q(

√
2 +

√
2 +

√
2) is an abelian extension of Q, and determine its Galois group.

13. Let L = L(x) where x is transcendental over K. Show that every element of L−K is tran-
scendental over K. (An extension L/K with this property is said to be purely transcendental.)

Suppose further that L = K(x, y), where y is algebraic over K. Show that if y 6∈ K then L/K
is not a simple extension.

14. Let L/K be an infinite algebraic extension. Show that L/K is Galois if and only if
K = LAut(L/K). [Hint: reduce to the case of a finite extension.]

15. Let k be any field, and let L = k(X). Define mappings σ, τ : L → L by the formulae

τf(X) = f
( 1

X

)
, σf(X) = f

(
1− 1

X

)
.

Show that σ, τ are automorphism of L, and that they generate a subgroup G ⊂ Aut(L) iso-
morphic to S3. Show that LH = k(g(X)) where

g(X) =
(X2 −X + 1)3

X2(X − 1)2
.
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