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1. Let K = Q(¢) be the n'" cyclotomic field with ¢ = e2™/™. Show that under the isomorphism
Gal(K/Q) ~ (Z/nZ)*, complex conjugation is identified with the residue class of —1 (mod n).
Deduce that if n > 3, then [K : K NR] = 2 and show that K "R = Q(¢ + (') = Q(cos 27 /n).

2. Find all the subfields of Q(e?™/7), expressing them in the form Q(z).

3. (i) Let K be a field, p a prime and K’ = K(¢) for some primitive p'" root of unity ¢. Let
a € K. Show that X? — a is irreducible over K if and only if it is irreducible over K’. Is the
result true if p is not assumed to be prime?

(ii) If K contains a primitive n'" root of unity, then we know that X™ — a is reducible over K

if and only if a is a d™® power in K for some divisor d > 1 of n. Show that this need not be
true if K doesn’t contain a primitive n'® root of unity.

4. Let K be a field containing a primitive m'™" root of unity for some m > 1. Let a, b € K
such that the polynomials f = X™ — a, g = X™ — b are irreducible. Show that f and g have
the same splitting field if and only if b = ¢™a” for some ¢ € K and r € N with ged(r,m) = 1.

5. Let f be an irreducible separable quartic, and ¢ its resolvant cubic. Show that the discrim-
inants of f and g are equal.

6. Let f € Q[X] be an irreducible quartic polynomial whose Galois group is A4. Show that
its splitting field can be written in the form K(v/a, vb) where K/Q is a Galois cubic extension
and a, b € K.

7. (i) Show that the Galois group of f(X) = X° —4X + 2 over Q is S5, and determine its
Galois group over Q(7).

(ii) Find the Galois group of f(X) = X% —4X + 2 over Q and over Q(7).

8. In this question we determine the structure of the groups (Z/mZ)*.

(i) Let p be an odd prime. Show that for every n > 2, (1+p)”" = 1+p""! (mod p"). Deduce
that 1+ p has order p"~ ! in (Z/p"Z)*.

(ii) If b € Z with (p,b) = 1 and b has order p — 1 in (Z/pZ)* and n > 1, show that " has
order p — 1 in (Z/p"Z)*. Deduce that for n > 1 and p an odd prime, (Z/p"Z)* is cyclic.

(iii) Show that for every n >3, 5% ° =1+ 2" (mod 2"). Deduce that (Z/2"Z)* is generated
by 5 and —1, and is isomorphic to Z/2"2Z x Z/2Z, for any n > 2.

(iv) Use the Chinese Remainder Theorem to deduce the structure of (Z/mZ)* in general.

(v) Dirichlet’s theorem on primes in arithmetic progressions states that if a and b are coprime
positive integers, then the set {an + b | n € N} contains infinitely many primes. Use this, the
structure theorem for finite abelian groups, and part (iv) to show that every finite abelian group
is isomorphic to a quotient of (Z/mZ)* for suitable m. Deduce that every finite abelian group
is the Galois group of some Galois extension K/Q. [It is a long-standing unsolved problem to
show this holds for an arbitrary finite group.]

(vi) Find an explicit = for which Q(z)/Q is abelian with Galois group Z/23Z.



2mi/m for a positive integer m.

9. Here and in question 11, (,, = ¢

(i) Find the quadratic subfields of Q((5).

(ii) Show that Q((21) has exactly three subfields of degree 6 over Q. Show that one of them
is Q(¢r), one is real, and the other is a cyclic extension K/Q((3). Use a suitable Lagrange
resolvent to find a € Q((3) such that K = Q((3, a).

10. Let @, € Z[X] denote the n'™ cyclotomic polynomial. Show that:

(i) If n is odd then ®q,(X) = &, (—X).

(ii) If p is a prime dividing n then ®,,(X) = &,,(X?).

(iii) If p and ¢ are distinct primes then the nonzero coefficients of ®,, are alternately +1 and

—1. [Hint: First show that if 1/(1 — X?)(1 — X?) is expanded as a power series in X, then the
coefficients of X™ with m < pq are either 0 or 1.]

(iv) If n is not divisible by at least three distinct odd primes then the coefficients of ®,, are —1,
0or 1.

(v) ®3x5¢7 has at least one coefficient which is not —1, 0 or 1.

Additional assorted examples (of varying difficulty)

11. (i) Let p be an odd prime. Show that if r € Z then >, ¢° equals p if r =0 (mod p)
and equals 0 otherwise.

(i) Let 7 = 20<n<p CgQ. Show that 77 = p. Show also that 7 is real if —1 is a square mod p,
and otherwise 7 is purely imaginary (i.e. 7/i € R).

(iii) Let L = Q((,). Show that L has a unique subfield K" which is quadratic over Q, and that
K = Qf/zp) where ¢ = (—1)P~1/2,

(iv) Show that Q((n) C Q(¢,) if m|n. Deduce that if 0 # m € Z then Q(y/m) is a subfield of

Q(Capmy))- [This is a simple case of the Kronecker-Weber Theorem, which says that every abelian
extension of Q is a subfield of a suitable Q((,).]

12. Show that Q(1/2 4+ v/2 + v/2) is an abelian extension of Q, and determine its Galois group.

13. Let L = L(x) where z is transcendental over K. Show that every element of L — K is tran-
scendental over K. (An extension L/K with this property is said to be purely transcendental.)

Suppose further that L = K(z,y), where y is algebraic over K. Show that if y ¢ K then L/K
is not a simple extension.

14. Let L/K be an infinite algebraic extension. Show that L/K is Galois if and only if
K = LA/ [Hint: reduce to the case of a finite extension.]

15. Let k be any field, and let L = k(X). Define mappings o, 7 : L — L by the formulae

1) = f(x) or)=f(1-5).

Show that o, 7 are automorphism of L, and that they generate a subgroup G C Aut(L) iso-
morphic to S3. Show that L7 = k(g(X)) where

(X2 - X +1)3
X2(X —-1)2

9(X) =



